SPTC Seminar Series

Innovative Multi-Hazard Resistant Bridge Columns for Accelerated Bridge Construction

Jeffery S. Volz, SE, PE, PhD

SPTC Seminar Series

Innovative Multi-Hazard Resistant Bridge Columns for Accelerated Bridge Construction

Jeffery S. Volz, SE, PE, PhD

SPTC Seminar Series

Innovative Multi-Hazard Resistant Bridge Columns for Accelerated Bridge Construction

Jeffery S. Volz, SE, PE, PhD

Outline

- Evolution of Concept
 - Hollow-Core Concrete
 - Concrete-Filled Tube
 - Concrete-Filled Double-Tube
- Column Design
 - Initial Sizing Guidelines
 - Sectional Analysis
- Research Project
 - Specimen Design & Fabrication
 - Specimen Testing & Results
 - Next Steps
- Thank Yous & Questions?

Evolution of Concept

Evolution of Concept

Hollow-Core Concrete Columns

Evolution of Concept

Initial Sizing Guidelines

- Select outer column diameter, D_o
- Calculate minimum concrete wall thickness, t_c $t_c = 0.10D_o$ to $0.15D_o$
- Calculate steel tube outer diameter, D_i $D_i = D_o - 2t_c$
- Calculate steel tube thickness, t_s $t_s = D_i/64$ to $D_i/32$
- Calculate FRP tube thickness, t_f $t_f = 0.035 D_o(f'_c/f_t)$ (low seismic regions) $t_f = 0.105 D_o(f'_c/f_t)$ (high seismic regions)

Sectional Analysis

- Discretize cross section into horizontal segments
- Perform a non-linear strain compatibility analysis
 - Assume neutral axis location
 - Calculate strains in each material in each strip
 - Calculate stress and force in each strip
 - Calculate internal moment and axial force
- Assumptions
 - Plane sections remain plane
 - Perfect bond between the steel and concrete
 - Elastic-perfectly plastic steel stress-strain behavior
 - Confined concrete stress-strain behavior
 - Ignore tensile strength of concrete
 - Ignore longitudinal capacity of FRP

Specimen Parameters

- Column height = 8'-0"
- FRP outer diameter, $D_o = 18-5/8"$
- FRP tube wall thickness, $t_f = 3/16$ "
- Steel tube outer diameter, $D_i = 12-3/4$ "
- Steel tube wall thickness, $t_s = 1/4$ "
- Concrete wall thickness, t_c = 2-3/4"

Material Parameters

- FRP tube: GFRP, 40 ksi hoop tensile strength
- Steel tube: API 5L X52, 52 ksi yield, 66 ksi ultimate strength
- Concrete core: SCC, 10 ksi 28-day strength or UHPC, 20 ksi 28-day strength

Research Project Next Steps

Thank You

Royce Floyd

Jackson Milner

John Bullock

Omar Yadak

Chris Ramseyer

Scott Harvey

Jacob Choate

Questions?

