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1. INTRODUCTION

1.1 Background 

Traffic loads are one of the key data elements required for the design and analysis 

of pavement structures. Traditionally the mixed traffic stream was aggregated into 

equivalent single-axle loads (ESALs). The Mechanistic Empirical Pavement Design 

Guide (MEPDG), later named as DARWin-ME and Pavement ME Design, proposes a 

more rational approach to characterize traffic in terms of full axle-load spectrum. MEPDG, 

DARWin-ME, and Pavement ME Design are used in this report interchangeably. It 

provides users with the flexibility to input three levels of traffic inputs based on data 

availability and the importance of the project: Level 1 site specific with the highest quality, 

Level 2 regional specific with medium quality, and Level 3 state or national defaults with 

the lowest quality. To meet the traffic data requirements in DARWin-ME, automated traffic 

collection techniques are needed. However, automated traffic data often have errors, 

particularly for data collected from weigh-in-motion (WIM) sites. A national study 

concludes that only 15% to 25% of the WIM data collected are of "good" quality (Lu and 

Harvey, 2006). One of the primary causes is that many state agencies are lacking in 

staffing, resources, and relevant supporting software to examine the huge amount of raw 

WIM data for quality assurance (QA), while most WIM sensor vendors do not include 

details for quality control (QC) in reports. It is impractical to manually process the data 

files even with computer assistance, and this process needs to be automated with 

software for routine implementation. 

In addition, with limited number of available WIM sites within a state highway 

agency, how to generate traffic inputs required in MEPDG for any design location remains 

a challenge. If no prior Level 1 traffic WIM data are available for a pavement design, 

utilizing Level 3 state-wide default traffic input parameters may lead to estimation of 

inconsistent pavement performance. Therefore, Level 2 regional traffic inputs should be 

developed and used for pavement design by combining existing site-specific data from 

WIM systems located on sites that exhibit similar traffic characteristics. How to qualify 
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these similarities and develop loading groups (also called traffic clusters) are therefore 

critical for the successful implementation of Pavement ME Design at any design location. 

Currently, Oklahoma Department of Transportation (ODOT) operates 

approximately 20 WIM stations statewide and is actively adopting portable WIM 

programs. It is vital to utilize the abundant WIM data sets and develop such traffic input 

parameters for ODOT to successfully implement the DARWin-ME. Recognizing that no 

comprehensive study has been conducted to evaluate the statewide WIM data quality, in 

this collaborative project we propose to develop WIM quality control metrics and 

associated software interfaces for checking the quality of Oklahoma WIM data and 

generating site-specific (Level 1), region-specific (Level 2), and statewide (Level 3) traffic 

inputs that are required for local calibration and implementation of the Pavement ME 

Design in Oklahoma. 

In addition, ODOT has performed extensive material testing and characterization 

work during the past decade, much of which can be used to generate Level 1 and Level 

2 material inputs for DARWin-ME. It is necessary to examine these data sets and evaluate 

their suitability for use in Pavement ME Design. The different types of materials shall 

include asphalt mixes, binders, aggregate base, stabilized subgrade, natural subgrade. 

Meanwhile, a software interface is needed to retrieve Level 1 and Level 2 material design 

values from the developed materials database for a specific design project.  

1.2 Objectives 

The objective of this research is to develop WIM QC metrics and associated 

software interfaces that ODOT can use to assess and improve WIM data quality, and 

generate site-specific (Level 1), region-specific (Level 2), and statewide average (Level 

3) traffic inputs that are required for the Pavement ME Design in Oklahoma. This research

will include the following tasks to achieve the objective: (1) perform a comprehensive 

review of current literature and methodologies on WIM data quality and use of WIM data 

for DARWin-ME; (2) identify and develop WIM data QC metrics and the relevant software 

for Oklahoma WIM data check and process; (3) conduct statewide WIM data check using 

developed software to evaluate the health of WIM sensors; (4) identify available material 

data in Oklahoma and develop software to generate Level 1 and Level 2 material inputs 
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for DARWin-ME; (5) develop traffic clusters and loading groups and software interface to 

generate three levels of traffic inputs for Pavement ME Design at any design location in 

Oklahoma; and (6) provide training and technical support to meet ODOT' special needs 

in pavement design and analysis. 

1.3 Report Outline 

This final report has seven chapters which are organized as below. 

Chapter 1 provides the background and the presents the objectives and tasks of 

this project. 

In Chapter 2, summary of a comprehensive literature review is provided aiming to 

develop an in-depth understanding of traffic and materials input parameters and 

sensitivity analysis of MEPDG. In particular, materials and traffic data input requirements 

and existing research efforts, WIM systems data quality check methods, how WIM data 

are used to generate axle loading spectra and volume adjustment factors for MEPDG, 

and related sensitivity analyses are investigated. 

Chapter 3 primarily focuses on the preparation of traffic data in Oklahoma for 

Pavement ME Design. The Prep-ME software and its capabilities for traffic are introduced, 

followed by how Prep-ME can be used to assist statewide traffic data check and the 

results of statewide traffic data check results. 

Using multiple years of WIM and vehicle classification data from Oklahoma which 

passed the quality check, Chapter 4 illustrates how the three levels of traffic inputs are 

generated for Pavement ME Design: Level 1 site-specific data with the highest quality, 

Level 2 cluster data with medium quality, and Level 3 state or national defaults with the 

lowest quality. Cluster analysis is applied to develop homogeneous groups for each traffic 

input. Subsequently, decision tree model and multinomial regression model are 

developed for the selection of appropriate traffic clusters under given site design 

conditions. In addition, a case study is included to evaluate the variations of pavement 

performance at various levels of traffic inputs.  

The Prep-ME software is customized for the traffic data generation at three levels 

for Pavement ME Design in Oklahoma. For Level 1 input, Prep-ME allows users to export 

site-specific traffic data “By Direction” or “By Station”. A new clustering method is 
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proposed for Level 2 traffic input based on four clustering parameters: the rural or urban 

classification, function class of highway, average daily truck traffic volume (AADT) and 

ratio of single unit and multiple unit trucks (SU/MU). In addition, the Prep-ME software 

also includes the Truck Traffic Class (TTC) approach, simplified TTC approach, and the 

"Flexible Clustering" method which can be used for lower volume roads or design sites 

without relevant traffic data inputs based on engineering judgments. For level 3 output, 

three methods are provided in Prep-ME: State Average, LTPP-5(004) and Pavement ME 

defaults. The generated output files from Prep-ME, XML format for Pavement ME Design 

and text format for MEPDG, can be directly imported to the ME design software. 

In Chapter 5, the traffic data from the Long Term Pavement Performance (LTPP) 

are extracted for the state Oklahoma and the traffic inputs for Pavement ME Design are 

summarized for Pavement ME Design. 

In Chapter 6, the available material characterization data at ODOT are investigated 

and summarized. Subsequently, two new features are developed in the Prep-ME software 

to retrieve resilient modulus data of natural subgrade soils and dynamic modulus data of 

Oklahoma asphalt mixes for directly importing into Pavement ME Design. 

Finally, the conclusions and findings from this study are presented in Chapter 7. 
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2. LITERATURE REVIEW

2.1 The Pavement ME Design Procedure 

The Pavement ME Design approach consists of three major stages, as shown in 

Figure 1 (AASHTO, 2014). Stage 1 of this procedure is to develop input values and 

identify potential strategies or trial designs. Pavement materials inputs, traffic 

characterization data, and climatic data are developed and fed into the Pavement ME 

Design software. Stage 2 consists of the structural/performance analysis, in which the 

trial section is analysed incrementally over time using the pavement response and 

distress models, and the outputs of the analysis are accumulated damage amounts of 

distress and smoothness over time. A pavement structural design is therefore obtained 

through an iterative process in which predicted performance is compared against the 

design criteria until all are satisfied to the specified reliability level. Stage 3 of the 

process includes the evaluation of the structurally viable alternatives, such as life cycle 

cost analysis and constructability analysis. 

The hierarchical approach is a unique feature in Pavement ME Design with 

regard to traffic, materials, and environmental inputs, which provides the designer with 

flexibility in obtaining design inputs based on the criticality of the project and available 

resources. Level 1 inputs, generally in terms of site-specific inputs, provide for the 

highest level of accuracy and would have the lowest level of uncertainty. Level 2 inputs 

provide an intermediate level of accuracy, typically would be user-selected either from 

an agency’s database, a limited testing program, or estimation through correlations. 

Level 3 inputs provide the lowest level of accuracy. National default values provided in 

the Pavement ME Design software are generally used as level 3 inputs. 

2.2 Sensitivity Analysis 

Pavement ME Design requires hundreds of inputs to model traffic, 

environmental, materials, and pavement performance to provide estimates of pavement 

distress over the design life. Many designers may lack specific knowledge of the data 
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required. Sensitivity study is therefore beneficial to assess the relative sensitivity of an 

input to the model used in the Pavement ME Design so that designers can select 

appropriate inputs and focus on those inputs having the most significant effect on 

desired pavement performance. Many agencies or institutions have conducted 

sensitivity analysis research, such as Arkansas (Hall and Beam, 2005), Iowa (Coree et 

al, 2005), California (Kannekanti, 2006), Kentucky (Graves, 2006), New Jersey (Sauber, 

2006), Texas (Freeman, 2006), and NCHRP 1-47 (Schwartz, 2011). The sensitivity 

analyses suggested that the most significant input parameters be determined or 

analyzed further at the state level for the implementation of the Pavement ME Design, 

including: (1) climate data; (2) traffic load spectra data; (3) HMA inputs such as dynamic 

modulus, indirect tensile strength and creep compliance; (4) PCC inputs such as 

coefficient of thermal expansion (CTE), modulus of rupture, compressive strength, and 

Poisson’s ratio; (5) unbound material inputs in terms of resilient modulus. 

2.3 Traffic Inputs in Pavement ME Deign 

The equivalent single axle load (ESAL) approach used for traffic characterization 

in AASHTO 1993 version is no longer needed in the MEPDG (AASHTO, 1993). The 

MEPDG requires axle load spectra along with different types of distribution factors of 

various types of vehicles (AASHTO, 2014).  Therefore, development of traffic input 

parameters is essential for successful implementation of MEPDG for design and 

analysis of new pavements and rehabilitation of existing pavements. The MEPDG uses 

a hierarchical approach (Level 1 through Level 3) for development of traffic input 

parameters. The Level 1 – Site Specific, Level 2 – State/Regional Specific and Level 3 – 

National/default, indicate a good, modest, and poor knowledge of past and future traffic 

characteristics, respectively. Dozens of research has been conducted in the past 10 

years primarily focusing on three research areas: (1) Required traffic Inputs for MEPDG, 

(2) traffic input levels and cluster analysis, (3) WIM Data Quality and Data Check, (4)

and (5) Existing Tools for WIM Data Analysis. 
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2.3.1 Required Traffic Data and Inputs 

Ideally, site-specific traffic data regarding traffic count, time distribution, axle 

configuration, and axle load spectra should be collected for each design project. This 

will provide the most accurate traffic input for the MEPDG design. However, such an 

effort is impractical, and the data are rarely available, due to the associated cost. A 

more rational practice would be using site-specific traffic data for especially important 

roads and regional- or national-default values for less important roads. Table 2 presents 

the data required at different input levels for all required traffic inputs in the MEPDG. 

Many researchers have reported that utilization of Level 3 (default) traffic input 

parameters may result in inconsistent and incorrect performance of a pavement design 

and analysis using the AASHTOWare-ME (Lu and Harvey 2006, Tran and Hall 2007a 

and 2007b, Swan et al. 2008, Elkins and Higgins 2008, Jiang et al. 2008, Buch et al. 

2009, Li et al. 2009, Ishak et al. 2009 and 2010, Smith and Diefenderfer 2010, Haider et 

al. 2011, Romansochi et al. 2011, Stone et al. 2011, Selezneva et al. 2014). All of the 

aforementioned studies found significant differences between the default and site-

specific values. Therefore, it was recommended that every state must develop Level 1 

(site specific) and Level 2 (regional or cluster-based) traffic input parameters for 

successful implementation of AASHTOWare-ME.  

Specifically, in order to generate Level 2 traffic inputs, many studies performed 

clustering analysis to identify typical axle load spectra for a region. Papagiannakis et al. 

(2006) applied hierarchical cluster analysis technique on LTPP WIM data to identify 

groups of sites with decreasing similarities based on either the vehicle percentage by 

class or the percentage of axles by load interval. Wang et al. (2007) conducted 

clustering analysis on the spatial and temporal variations of the load distributions from 

the LTPP traffic database. Wang et al. (2011) proceeded cluster analysis approach to 

identify loading patterns and estimation of full axle-load spectrum data using Arkansas 

WIM data. Sayyady et al. (2011) accomplished multidimensional clustering approach to 

generate regional average truck axle load distribution factors for North Carolina. Mai et 

al (2013) considered the effects of traffic inputs on pavement design thickness and 

applied correlation-based clustering to determine the number of clusters objectively. 

Abbas et al. (2014) performed clustering analysis on WIM stations across the state of 
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Ohio and evaluated site-specific, statewide average, cluster average, and MEPDG 

default axle load spectra traffic load effect on asphalt pavement design with the 

MEPDG. Li et al. (2015) employed the K-means cluster algorithm and developed 

simplified Truck Traffic Classification clusters for secondary road pavement design. In 

addition, several state specific clustering analysis methods were developed to 

incorporate their state specific traffic characteristics for the Mechanistic-Empirical 

pavement design (Jiang Y. et al. 2008, Buch et al 2009, Stone et al. 2011, and Wang et 

al. 2014). 

2.3.2 Traffic Input Levels and Clustering Analysis 

Ideally, Level 1 site-specific traffic data should be collected for each design 

project, which provides the most accurate traffic inputs for the Pavement ME Design. 

However, such an effort is impractical since the data are rarely available due to the 

associated cost. A more rational practice would be using site-specific traffic data for 

especially important roads and regional (Level 2) or state (Level 3) defaults for less 

important roads. 

Many researchers have reported that utilization of Level 3 traffic input parameters 

may result in inconsistent and incorrect ME based pavement performance (Lu and 

Harvey 2006, Tran and Hall 2007a, 2007b, Swan et al. 2008, Elkins and Higgins 2008, 

Jiang et al. 2008, Buch et al. 2009, Smith et al. 2010, Ishak et al. 2010, Haider et al. 

2011, Romansochi et al. 2011, Sayyady et al. 2011, and Selezneva et al. 2014). All the 

aforementioned studies found significant differences between the default and site-

specific values, and recommended that state should develop Level 1 and/or Level 2 

traffic inputs for the implementation of Pavement ME Design based on WIM systems 

located on sites that exhibit similar traffic characteristics based on clustering analysis. 

Several states studied traffic data using rigorous cluster analysis to incorporate 

their state specific traffic characteristics for the Pavement ME Design (Prozzi and Hong 

2005, Lu and Harvey 2006, Jiang Y. et al. 2008, Lu and Harvey 2009, Buch et al 2009, 

Ishak et al. 2010, Syyady et al. 2011, Haider et al. 2011, Darter et al. 2013, Tarefder 

2013, Abbas et al. 2014a, 2014b, Wang et al. 2014). Various clustering methods have 

been used for this purpose, such as hierarchical technique (Papagiannakis et al., 2006, 
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Wang et al., 2011, Li et al., 2016), multidimensional clustering approach (Sayyady et al., 

2011), K-means algorithm (Li et al., 2015, Li et al., 2016), model-based (Li et al., 2016), 

and fuzzy c-means algorithms (Li et al., 2016). These research activities have simplified 

the understanding and applicability of traffic patterns and ultimately eased the preparation 

of the traffic load spectra inputs based on WIM data for the Pavement ME Design 

procedure. 

2.3.3 WIM Data Quality and Data Check 

ASTM E1318-09 (2009) defines weigh-in-motion (WIM) as “the process of 

estimating a moving vehicle’s gross weight and the portion of that weight that is carried 

by each wheel, axle, or axle group, or combination thereof, by measurement and 

analysis of dynamic vehicle tire forces”. It classifies WIM systems into four types based 

on their application and details their respective functional, performance, and user 

requirement. 

There are a number of quality control (QC) procedures for WIM data check. 

LTPP (2013) provided mandatory, logic, range and verification QC checks on traffic 

data collected in the field prior to entry into the data base to guarantee data quality. 

LTPP (2001) developed traffic QC software to load, process, and produce reports for 

the LTPP program. FHWA (2013) and AASHTO (2009) guides are industry standards 

and emphasize the need for quality control measures in traffic monitoring programs. 

ASTM E2759-10 (2010) also disclosed how traffic data was managed from field data 

collection through evaluation, acceptance, summarization and reporting. There are also 

state and project specific traffic data QC requirements, e.g., QC procedures developed 

to apply to New Mexico and North Carolina WIM data (Brogan et al., 2011, 

Ramachandran et al, 2011 and Stone et al, 2011), validation and QC checks for type I 

WIM traffic data to insure reliable and representative load spectra for MEPDG (Quinley, 

2010), QC program for INDOT to improve the accuracy of WIM data to identify 

overweight vehicles (Nichols et al, 2004), and QC with peak-range check, peak-shift 

check and correlation analysis to quantify the axle loading spectra comparison process 

of rational checks (Mai, 2013). 
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Both the FHWA Traffic Monitoring Guide (FHWA, 2001) and AASHTO Guidelines 

for Traffic Data Programs (AASHTO, 2009) emphasize the need for QC measures in 

traffic monitoring programs. As a result, a number of quality control (QC) procedures 

have been developed for WIM data check. ASTM E2759-10 (2010) disclosed how traffic 

data was managed from field data collection through evaluation, acceptance, 

summarization and reporting. The LTPP (2013) provided mandatory, logic, range and 

verification QC checks on traffic data collected in the field prior to entry into the 

database to guarantee data quality. Several states have developed specific traffic data 

QC requirements and procedures, such as Indiana (Nichols et al, 2004), California 

(Quinley, 2010), North Carolina (Sayyady et al., 2010, Ramachandran et al, 2011), and 

New Mexico (Brogan et al., 2011). 

In particular, the traffic data check procedure included in the FHWA Traffic 

Monitoring Guide (TMG) (FHWA, 2001) has been widely adopted. For vehicle 

classification data, a four-step data check procedure is recommended: (1) to compare 

the manual classification counts with the hourly vehicle classification data; (2) to check 

the number of Class 1 (motorcycles); (3) to check the reported number of unclassified 

vehicles; (4) to compare the current truck percentages by class with the corresponding 

historical percentages. No significant changes in the vehicle mix should be anticipated. 

For weight data check, there are two basic steps to evaluate recorded vehicle weight 

data (FHWA, 2001). Firstly, to check the front axle and drive tandem axle weights of 

Class 9 trucks. The front axle weight should be between 8,000 and 12,000 lb (10,000 ± 

2,000 lb). The drive tandems of a fully loaded Class 9 truck should be between 30,000 

and 36,000 lb (33,000 ± 3,000 lb). Secondly, to check the gross vehicle weights of 

Class 9 trucks. The histogram plot should have two peaks. One represents unloaded 

Class 9 trucks and should be between 28,000 and 36,000 lb (32,000 ± 4,000 lb). The 

second peak represents the most common loaded vehicle condition with a weigh 

between 72,000 and 80,000 lb (76,000 ± 4,000 lb). 

Other procedures, primarily based on the FHWA TMG procedure but customized 

to individual states, have been also proposed by various researchers. For example, Mai. 

(2013) developed a QC procedure including peak-range check, peak-shift check and 

correlation analysis to quantify the axle loading spectra comparison process of rational 
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checks. A structured quality control check procedure was suggested by Tarefder et al. 

(2013) for New Mexico to eliminate erroneous data. 

2.3.4 Existing Tools for WIM Data Analysis 

With the wide use of WIM data for various applications, several tools have been 

developed to aid WIM data process and analysis. The BullPiezo software could 

compute Seasonal Adjustment Factor (SAF), Annual Average Daily Traffic (AADT), and 

Monthly Average Daily Traffic (MADT) from WIM data based on TMG (Kwon, 2015). 

TrafLoad, final product of the NCHRP Project 1-39 project, is able to converted standard 

FHWA classification count and weight data files into vehicle classification, load spectra 

and traffic growth forecasts to the 2002 AASHTO pavement design software without QC 

procedures (NCHRP 1-39, 2004). Prep-ME is developed to pre-process, import, check 

the quality of raw WIM traffic data, and generate the required three levels of traffic 

inputs for DARWin-ME software (Wang et al. 2013, and Wang et al. 2014). Long-Term 

Pavement Performance Pavement Loading User Guide (LTPP PLUG) software helped 

users select site-specific or default axle loading conditions from its traffic loading library 

and produced axle load distribution input files for the MEPDG or DARWin-ME software 

(Selezneva and Hallenbeck, 2013). 

With the increasing use of WIM data for various applications especially for the 

Pavement ME Design in recent years, several tools have been developed to aid WIM 

data processing and analysing. The BullPiezo developed a software to compute AADT, 

seasonal and monthly adjustment factor from WIM data (Kwon, 2015). TrafLoad, the 

final product of the NCHRP 1-39 Project (NCHRP 1-39, 2004), is able to process 

standard FHWA classification and weight data for MEPDG but without data QC 

procedures and several data requirements for MEPDG not met. Many state highway 

agencies have developed Excel® spreadsheet based tools to reduce raw vehicle 

classification and weight data, and to generate volume adjustment factors and axle load 

spectra for the Pavement ME Design (Tran et al 2007a 2007b, Tarefder et al. 2013, 

Hasan et al 2016). However, the quality control and updating procedure needs to be 

repeated manually when new traffic data are available. In particular, LTPP developed a 

spreadsheet based tool, named Pavement Loading User Guide (PLUG), to help users 
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select site-specific or default axle loading conditions from its traffic loading library and 

produce axle load distribution input files (Selezneva and Hallenbeck, 2013). 

The state pooled fund study TPF-5(242), Traffic and Data Preparation for 

AASHTO MEPDG Analysis and Design, has developed a full production software 

named Prep-ME to store and process climate, traffic, and materials data required for the 

Pavement ME Design Software.  This software complies with FHWA TMG and Travel 

Monitoring Analysis System (TMAS) for quality control and quality check.  State 

highway agencies’ experience has been built into the QA/QC of traffic data collection. 

The software has the following key functions with more specific features requested by 

individual states (Wang et al. 2013, and Wang et al. 2014). 

• Perform automatic quality control check by direction and by lane of a WIM 

station for both classification and weight data following the algorithms defined 

in TMG. 

• Provide user friendly interfaces to review monthly, weekly and daily traffic 

data, and investigate the WIM data that is incomplete or fails the automatic 

QC check through various manual sampling and analysing operations. 

• Generate three levels of traffic inputs that can be directly imported into the 

MEPDG and Pavement ME Design Software.: Level 1 site specific, Level 2 

clustering average, Level 3 state average, and LTPP TPF-5(004) defaults. 

Clustering methods developed by North Carolina and Michigan DOTs, the 

Truck Traffic Classification (TTC) method, and the simplified TTC approach 

are fully implemented offering state agencies the flexibility of generating Level 

2 loading spectra inputs based on the availability of traffic data. 

 

2.4 Material Inputs in Pavement ME Deign 

2.4.1 Asphalt Materials 

Required asphalt binder properties include the complex shear modulus and 

associated phase angle (G* and δ) at multiple temperatures at a frequency of 10 

radians/sec (AASHTO T315) for Level 1 and 2 input, while the default A-VTS viscosity 

temperature susceptibility parameters based on Superpave Performance Grade (PG) 

for Level 3 input. 
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Dynamic modulus (|E*|) is the principal mechanical property input for hot mix 

asphalt (HMA) in the Pavement ME Design, which requires testing two or three replicate 

asphalt concrete specimens at five temperatures (14°F, 40°F, 70°F, 100°F, and 130°F) 

and six loading frequencies (25, 10, 5, 1, 0.5, and 0.1 Hz) (AASHTO TP62). Due to the 

substantial amount of time required, reducing the testing time for |E*| has been the 

focus of several studies (Dougan et al., 2003, Bonaquist and Christensen, 2005, 

Bonaquist, 2008). Recently, the Asphalt Mixture Performance Tester (AMPT), a servo-

hydraulic Simple Performance Tester (SPT) device, was developed to test asphalt 

mixtures over a range of temperatures and frequencies in accordance with AASHTO TP 

79. 

Creep compliance and low temperature tensile strength are additional 

mechanical properties required in the Pavement ME Design for predicting thermal 

cracking distress. Creep compliance can be measured at three temperatures (-4°F, 

14°F, and 32°F) and various loading times up to 1,000 sec while tensile strength at 140F 

in accordance with AASHTO T322 (AASHTO, 2008), both of which can be conducted 

on the same specimen. Default values can also be determined from empirical relations 

built into the Pavement ME Design based on functions of mix volumetric and binder 

viscosity properties. 

General asphalt mixture properties include asphalt binder content, in-place air 

voids (%), aggregate gradation, and volumetric properties. Other parameters, such as 

thermal properties, Poisson’s ratio, and total unit weight, are also required inputs in the 

Pavement ME Design, while default Level 3 values are recommended due to either the 

lack of certified testing protocols or the insignificant effects to performance. 

Lastly, the primary difference between characterizing new and existing HMA 

layers is that the dynamic modulus for existing HMA layer must be adjusted for the 

damage caused to the pavement by traffic loads and environmental effects (NCHRP 1-

37a, 2004). 

Several state DOTs including Arizona, Colorado, Florida, Idaho, Kansas, 

Minnesota, Missouri, North Carolina, Ohio, Oklahoma, Virginia, and Wisconsin have 

completed a significant portion of the implementation effort for asphalt materials through 

research contracts or in-house studies, with the following objectives (Von Quintus et al. 
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2015): 

• Evaluating the sensitivity of inputs at different hierarchy to the field 

performance. 

• Developing site-specific material inputs for the Pavement ME Design. 

• Including specialty mixtures, such as stone-matrix asphalt (SMA), cold-

recycled and mixes with high reclaimed or recycled asphalt pavement (RAP) 

material, which were not included in the original material database used in 

developing Level 3 models and defaults. 

• Developing an input data library for typical materials used for new and 

reconstruction and rehabilitation designs. 

In particular, the characterization of asphalt materials is specifically focused on 

the dynamic modulus. The general approach employed by the highway agencies is to 

develop a dynamic modulus database and to assess the accuracy of the Witczak and 

Hirsch predictions against the measured results for both typical and specialty asphalt 

mixtures. 

 

2.4.2 PCC Materials 

The key PCC stiffness and strength properties are the elastic modulus (Ec) and 

the modulus of rupture (MOR) (Level 1), compressive strength (fc′) (Level 2) at various 

ages, or the 28-day fc′ (Level 3). Additional PCC properties required at all input levels 

include mix properties, thermal properties, and shrinkage properties. The strong 

influence of the coefficient of thermal expansion (CTE) on pavement performance has 

been demonstrated in several prior studies (Tanesi et al., 2007; Buch et al., 2008; 

Kampmann, 2008; Oh and Fernando, 2008; Haider et al., 2008, 2009; Velasquez et al., 

2009). CTE can be measured using AASHTO TP60 (Level 1), approximated using 

mixture theory (Level 2), or estimated from historical values (Level 3), while little 

guidance nor acceptable practical test protocols on measurement of shrinkage 

properties and shortwave absorptivity for PCC mixes. 

The primary difference between characterizing new concrete layers and existing 

layers is that the Ec and MOR values for existing PCC slabs need to be adjusted for the 
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damage by traffic loads and environmental effects using recommended empirical factors 

at various pavement conditions (NCHRP 1-37a, 2004). 

Implementation activities pertinent to the characterization of PCC materials have 

been primarily focused on the following (Von Quintus et al. 2015): 

• Determining thermal properties of PCC with a special emphasis on measuring 

the CTE of typical PCC mixes with local aggregates and understanding the 

significance of CTE on performance predictions. 

• Building a data library of material properties that include both strength and 

fresh concrete properties. 

 

2.4.3 Unbound Materials 

The principal mechanical property for unbound materials is the resilient modulus 

(MR) at the optimum moisture and in-place density (NCHRP 1-37a, 2004). For Level 1 

input, the regression coefficients k1, k2, and k3 for the stress-dependent resilient 

modulus relationship are required. For Level 2, MR can be determined from correlations 

with California Bearing Ratio, R-value, structural layer coefficient ai, or plasticity index 

and gradation. For Level 3, default MR are provided as a function of AASHTO soil type.  

In addition to stiffness, hydraulic properties for the partially saturated unbound 

materials are required as inputs for the EICM model, including the saturated hydraulic 

conductivity (permeability) and the soil water characteristic curve (SWCC). Alternatively, 

default values can be determined as a function of gradation and plasticity index. 

The implementation activities pertinent to the characterization of unbound 

materials have been primarily focused on the following (Von Quintus, et al. 2015): 

• Developing a resilient modulus data library for typical granular aggregate 

base materials and subgrade soils. 

• Developing a resilient modulus prediction model based on soil parameters. 

• Utilizing FWD and other non-destructive tests to determine the resilient 

modulus. 

It should be noted that the Level 3 resilient modulus values presented in the 

Pavement ME Design represent optimum moisture condition and maximum dry density 

typically anticipated in the field at the time of construction. An increase in compaction 
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moisture content could significantly adversely affected the resilient modulus value 

primarily depending on the percent of material passing the No. 200 sieve and the 

plasticity of the fines. Engineering judgment should be applied to account for moisture 

sensitivity when these values are input (Von Quintus, et al. 2015). 

 

2.4.4 Software Tools 

Various tools and database for materials have been developed at both national 

and state level. ElHussein et al (2006) developed an Access® based material database 

that houses mechanistic properties for commonly used pavement materials to be used 

as input to run the M-E models, consisting of four components namely, the material 

database file, data access, database utility and a user interface. Zapata (2010) created 

a national database of pedologic soil families with soil properties for subgrade materials. 

The database focuses upon the SWCC parameters (Level 1), but also includes 

measured soil index. Schwartz and Li (2011) developed an Access® data management 

system named MatProp, which incorporated data entry, editing, and storing functionality 

for the material property inputs required by the Pavement ME Design for flexible, rigid, 

and unbound granular base and subgrade materials. Kutay and Jamrah (2013) 

conducted an extensive laboratory testing program to characterize asphalt mixtures 

commonly used in Michigan for |E*|, G* of binders and Indirect Tension Strength (IDT) 

at low temperatures. A standalone software, called DYNAMOD, was developed to serve 

as the database engine to allow engineers to easily reach the material testing data and 

generate input files that can be directly imported into Pavement ME Design. 
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3. TRAFFIC DATA CHECK AND PREPERATION 

 

3.1 Relevant Prep-ME Capabilities 

Through the transportation pooled fund study TPF-5(242), the Prep-ME software 

has been developed and enhanced based on extensive comments and feedback from 

participating states. The Pre-ME software is a full production software program to store 

and process climate, traffic, and materials data required for the AASHTO Pavement ME 

Design. This software complies with FHWA Traffic Monitoring Guide (TMG) and TMAS 

for quality assurance and quality control (QA/QC).  State highway agencies’ experience 

has been built into the QA/QC of traffic data collection. The software has the following 

basic functions with more specific features requested by individual states (Wang et al. 

2013, and Wang et al. 2014). The software has been customized for Oklahoma Weigh-

In-Motion (WIM) and Automated Vehicle Classifier (AVC) data and is used in this study. 

(1) Imports an agency’s WIM traffic data complying with FHWA Traffic Monitoring 

Guide (TMG) file formats, and store the data in SQL server Local database with 

exceptional computation efficiency. 

(2) Conduct TMAS 2.0 data check and generate TMAS check error log for each 

imported raw file. 

(3) Perform automatic quality control checks by direction and lane of a WIM 

station for both weight (Fig. 3.1) and classification (Fig. 3.2) data following algorithms 

defined in TMG. 

(4) Provide user friendly interfaces to review monthly, weekly and daily traffic 

data, and investigate the WIM data that is incomplete or fails the automatic QC check 

through various manual, sampling, and analyzing operations (Fig. 3.1). 

(5) Generate three levels of traffic inputs: Level 1 site specific, Level 2 clustering 

average, Level 3 state average, and LTPP TPF-5(004) defaults (Fig. 3.3).  

(6) Provides several clustering methods, offering state agencies with the flexibility 

of generating Level 2 loading spectra inputs for Pavement ME Design based on the 

availability of traffic data. 
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(7) Generate input files in the file formats that can be directly imported into 

MEPDG and Pavement ME Design software. 

 

Fig. 3.1 Weight Data Check by Direction and by Lane 

 

Fig. 3.2 Classification Data Check by Direction and by Lane 
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Fig. 3.3 Three-Level Traffic Outputs for Pavement ME Design 

 

3.2 Traffic Data Source 

Currently, Oklahoma Department of Transportation (ODOT) operates 

approximately 90 Automatic vehicle classification stations, out of which 21 are also WIM 

stations (Oklahoma traffic characteristics report, 2009). Five years (2008-2012) of 

continues WIM data and vehicle classification data is provided by ODOT from the 21 

WIM stations. Also, approximately four years (2013-2016) of additional AVC data is 

available for the analysis. All the 90 stations are located on one of the interstate 

highway, US highway or state highway spread throughout the state. Table3.1 describes 

the location of each WIM and AVC station along with the route and county details. 

Figure 3.4 is the map with AVC and WIM stations. 

Table 3.1 Description of AVC and WIM station locations 

Station ID County  Route Location 

AVC001 Cleveland SH-37 On SH-37, 1.70 miles W of I-35, in Moore 

AVC002 Cleveland US-77 On US-77, 1.10 miles S of SH-9, in Norman 

AVC003 Cleveland SH-9 On SH-9, 2.10 miles E of I-35, in Norman 

AVC004 Canadian SH-152 On SH-152, 0.55 miles W of SH-4, in Mustang 

AVC005 Oklahoma US-62 On US-62, 9.75 miles E of I-35, in Choctaw 
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Station ID County  Route Location 

AVC006 Oklahoma SH-66 
On 39th St (SH-66), 1.00 miles W of I-44, in 
Oklahoma City 

AVC007 Oklahoma I-40  On I-40, 2.00 miles W of I-44, in Oklahoma City 

AVC008 Oklahoma I-40 On I-40, 3.80 miles E of I-35, in Midwest City 

AVC009 Creek SH-66 On SH-66, 1.40 miles E of 81st St, in Sapulpa 

AVC010 Tulsa US-169 On US-169, 2.10 miles N of I-244, in Tulsa 

AVC011 Tulsa US-75 On US-75, 0.80 miles N of SH-117, in Jenks 

AVC012 Tulsa SH-266 On US-266, 0.40 miles E of US-169, in Tulsa 

AVC013 Tulsa SH-97 On SH-97, 3.00 miles S of US-412, in Sand Springs 

AVC014 Tulsa US-64 
On US-64 (Memorial Rd), 1.10 miles S of the Creek 
Tpk 

AVC015 Comanche I-44 On I-44, 0.50 miles N of SH-7 (Lee Blvd), in Lawton 

AVC016 Kay US-60 On US-60, 0.60 miles W of I-35 

AVC017 Jackson US-62 On US-62, 3.50 miles W of US-283, in Altus 

AVC018 Tulsa US-64 
On US-64, 0.38 miles W of 49th W Ave, E of Sand 
Springs 

AVC019 Tulsa I-44 On I-44, 200 ft W of Exit 236 (129th E. Ave) 

AVC020 Oklahoma I-35 
On I-35, 500 ft S of the Grand Ave (SE 36th St) 
Bridge 

AVC021 Muskogee US-64 On US-64 , 2.39 miles N of SH-2, N of Warner 

AVC022 Garvin US-77 On US-77, 1.74 miles S of SH-19, in Pauls Valley 

AVC023 Oklahoma I-44 
On I-44, 0.5 miles N of SW 29th St , in Oklahoma 
City 

AVC024 Oklahoma US-77 On US-77, 0.1 miles S of Britton Rd 

AVC025 Tulsa SH-51 On SH-51, 0.50 miles W of 145th Ave 

AVC026 Oklahoma I-44 On I-44, 0.40 miles E of Kelly Ave, in Oklahoma City 

AVC027 Woodward US-270 On US-270, 3.80 miles E of SH-34. SE of Woodward 

AVC028 Love I-35 On I-35, 0.10 miles N of the Red River Bridge at TX 

AVC029 Bryan US-69 On US-69, 5.30. miles S of SH-22, NE of Durant 

AVC030 Muskogee US-69 On US-69, 11.30 miles N  of US-266, S of Muskogee 

AVC031 Kay I-35 On I-35, 0.10 miles S of the Kansas/Oklahoma SL 

AVC032 Payne SH-51 On SH-51, 3.50 miles E of SH-51C, W of Stillwater 

AVC033 Grady US-81 On US-81, 2.10 miles S of SH-37, S of Minco 

AVC034 Garfield US-60 On US-60 , 5.00 miles E of SH-45, N of Enid 

AVC035 Okmulgee US-75 On US-75, 3.80 miles N of US-62, in Okmulgee 

AVC036 Cotton I-44 
On I-44, 0.20 miles N of the Red River Bridge at the 
TX 

AVC037 Washita SH-152 On SH-152, 1.50 miles W of US-183, W of Cordell 

AVC038 Woods US-64 On US-64, 4.30 miles E of SH-144, W of Alva 

AVC039 Kingfisher SH-51 On SH-51, 2.60 miles E of US-81, E of Hennessey 

AVC040 Payne SH-33 On SH-33, 0.50 miles E of SH-18, W of Cushing 

AVC041 Osage US-60 On US-60, 4.90 miles E of US-177, E of Ponca City 

AVC042 Craig US-60 On US-60, 0.10 miles NW of SH-66, W of Vinita 
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Station ID County  Route Location 

AVC043 Craig SH-66 On SH-66, 3.00 miles SW of US-60, W of Vinita 

AVC044 Adair US-59 On US-59, 2.50 miles S of SH-100, S of Stillwell 

AVC045 Latimer SH-2 On SH-2, 7.70 miles S of SH-31, N of Wilburton 

AVC046 Murray US-77 On US-77. 2.00 miles N of SH-7, N of Davis 

AVC047 Lincoln SH-66 On SH-66, 2.40 miles E of SH-18N, E of Chandler 

AVC048 Jefferson US-81 On US-81, 2.00 miles N of US-70, N of Waurika 

AVC049 Jefferson US-70 On US-70, 3.20 miles E of US-81, E of Waurika 

AVC050 Hughes SH-9 On SH-9, 6.00 miles E of US-75, E of Wetumka 

AVC051 Pittsburg US-270 
On US-270, 8.00 miles W of  US-69, NW of 
McAlester 

AVC052 Coal US-75 On US-75, 3.00 miles SE of SH-3, NW of Coalgate 

AVC053 Seminole SH-99 On SH-99, 2.10 miles S of US-270, S of Seminole 

AVC054 Beckham I-40 On I-40, 400 ft E of the Texas SL 

AVC055 Grady US-81 On US-81, 2.50 miles N of US-62, N of Chickasha 

AVC056 Oklahoma I-35 On I-35, 0.40 miles S of NE 10th St 

AVC057 Major US-60 On US-60, 3.50 miles N of SH-8, N of Fairview 

AVC058 Texas US-54 On US-54, 8.60 miles NE of US-64, NE of Guymon 

AVC059 Texas SH-3 On SH-3, 1.30 miles SE of SH-94, W of Hardesty 

AVC060 Caddo SH-9 On SH-9, 1.50 miles W of.SH-146, W of Ft Cobb 

AVC061 Oklahoma I-240 On I-240, 2.00 miles E of I-44, in Oklahoma City 

AVC062 Choctaw US-70 
On US-70,  4.40 miles E of US-70B E of Hugo, 
vicinity Sawyer 

AVC063 Tulsa I-244 On I-244, 0.30 miles N of 23rd St OP 

AVC064 Tulsa I-244 On I-244, 0.40 miles E of Harvard Ave 

AVC065 Oklahoma SH-74 
On Hefner Pkwy, 0.70 miles N of 63rd St Bridge, 
OKC 

AVC067 Oklahoma I-40 On I-40, 0.80 miles E of I-240 

AVC068 Tulsa US-169 On US-169, 0.35 miles S of 31st St 

AVC069 Cleveland I-35 On I-35, at S end of SE 89th Street Bridge 

AVC070 Pottawatomie SH-18 On SH-18, 1.62 miles N of I-40 

AVC071 Oklahoma SH-74 On SH-74, 0.32 miles S of Waterloo Rd 

AVC072 Oklahoma I-40 On I-40 Crosstown, EB 265 ft W of Shields Blvd OP 

WIM001 Washington US-75 On US-75, 6.30 miles S of US-60, S of Bartlesville 

WIM002 Murray I-35 On I-35, 3.60 miles S of SH-7, S of Davis 

WIM003 Oklahoma I-240 On I-240, 2.57 miles E of I-35, in Oklahoma City 

WIM005 Wagoner US-69 On US-69, 6.50 miles S of US-412, S of Chouteau 

WIM006 Okfuskee I-40 On I-40, 1.00 miles W of US-75 South, E of Okemah 

WIM007 Blaine US-270 On US-270, 2.70 miles W of SH-8, W of Watonga 

WIM009 Pontotoc SH-3 On SH-3, 1.10 miles E of SH-1, in Ada 

WIM010 Pittsburg US-69 On US-69, 5.40 miles N of SH-113 S, N of McAlester 

WIM011 Grady US-81 
On US-81, 2.46 miles S of US-81B S, S of Rush 
Springs 
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Station ID County  Route Location 

WIM016 Mayes US-412 On US-412, 2.60 miles W of US-69, W of Chouteau 

WIM021 Bryan US-69 On US-69, 1.10 miles N of the Red River Bridge 

WIM022 LeFlore SH-112 On SH-112, 1.20 miles E of US-59, E of Poteau 

WIM023 Major US-412 On US-412, 2.10 miles W of SH-58, W of Ringwood 

WIM025 Cimarron US-287 On US-287, 5.60 miles N of SH-325 

WIM027 Kay I035 On I-35, 3.50 miles N of US-60, S of Blackwell 

WIM028 Canadian I-40 On I-40, 300 ft W of Gregory Road 

WIM029 Sequoyah I-40 On I-40, 0.96 miles E of US-64 

WIM030 McClain I-35 On I-35, 0.47 miles W of SH-74 

WIM032 McCurtain US-70 On US-70, 4.50 miles W of US-259 

WIM104 Logan I-35 On I-35, 0.50 miles N of Waterloo Rd 

WIM114 Washita I-40 On I-40, 1.46 miles E of SH-34 

WIM118 Comanche US-62 On US-62, 1.30 miles W of SH-115 

 

 

Fig. 3.4 AVC and WIM Stations in Oklahoma 

 

 

 

 



Development of Statewide WIM Data Quality Control and  Final Report 
Axle Load Spectra and Traffic Volume Adjustment Factors for Oklahoma September 2018 

23 

3.3 Statewide Traffic Data Check Using Prep-ME 

The Prep-ME software is used to read the data WIM from the SQL database and 

used as an efficient tool to perform statewide traffic data check. The quality check for 

the available data is performed in the following stages: 

• Importing WIM and AVC data into the Prep-ME software. 

• Performing automatic Quality check. 

• Investigating the data QC results. 

• Enhancing the Quality of data with assisted data repair and sampling based 

on engineering judgements. 

 

3.3.1 Importing Traffic Data 

The AVC and WIM data are imported into the Prep-ME database by specifying 

the State name. The Travel Monitoring Analysis System (TMAS 2.0) data checks are 

implemented for each line of raw data, and the errors are summarized into an error log 

file for each imported file. Duplicate data and data with fatal and critical TMAS errors are 

not imported into the Prep-ME database. The software interface reports the number of 

rows of data importation, number of records failed the TMAS check, the failure rate in 

percentage, and number of duplicated rows. The error logs could assist traffic engineers 

in identifying WIM sensor issues. The data, which have passed the TMAS data, check 

and save them in the Prep-ME database tables. 
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Fig. 3.5 Importing ODOT WIM Data into Prep-ME 

 

3.3.2 Performing Automatic Quality Check 

In this process, three QC parameters define the evaluation of recorded vehicle 

weight data. All the weight data check processes are based on vehicle class 9 because 

they account for the majority of the truck traffic stream. 

• Gross weight distribution for unloaded and fully loaded trucks, 

• Ranges of front axle load, and drive tandem axle weight for fully loaded 

trucks. 

 

Gross Weight Histogram Check: The first step is to check the gross vehicle weights of 

Class 9 trucks. This step requires a histogram plot of the gross vehicle weights of Class 

9 trucks, which should have two peaks for most sites. Although the height of these 

peaks may be seasonally changed, the location of the two peaks is fairly constant over 

time. One represents unloaded Class 9 trucks and should be between 28,000 and 

36,000 lb (32,000 ± 4,000 lb). The second peak represents the most common loaded 

vehicle condition, whose weigh should be between 72,000 and 80,000 lb (76,000 ± 

4,000 lb). If the WIM scale was not properly calibrated, the histograms may vary from 

station to station, but four general cases are observed (FHWA, 2001): 
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• Fluctuated Data: if the weight data collected from the station were fluctuated, 

the WIM scale was classified as failed, and the calibration should be checked 

immediately. 

• Two Peaks Shifted: If a plot shows both peaks shifted from their expected 

location in the same direction, the scale is most likely out of calibration. The 

participating agency should then recalibrate that scale at that site and collect 

a new sample of data. 

• One Peak Shifted: If a plot shows one peak correctly located but another 

peak shifted from its expected location, the site should be reviewed for other 

potential scale problems. Additional information on that site may also need to 

be obtained to determine whether the scale is operating correctly. 

• Overweight Trucks: If the percentage of overweight vehicles (particularly 

vehicles over 100,000 lb.) for vehicle class 9 is high, the scale calibration is 

questionable. 

In the process of quality check using Prep-ME, the ranges of two peaks in the 

gross weight histogram is automatically verified, as shown in Fig. 3.6. 

 

Fig. 3.6 Gross Weight Distribution 

 

Axle Weight Check: In this step, the front axle and drive tandem axle weights of Class 

9 trucks are checked. Although the front axle is heavier when a truck is loaded, the front 

axle weight should be between 8,000 and 12,000 lb (10,000 ± 2,000 lb). The drive 

tandems of a fully loaded Class 9 truck (generally more than 72,000lb.) should be 
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between 30,000 and 36,000 lb (33,000 ± 3,000 lb). These limits are based on the 

extensive analyses of vehicle weight data at a national scale (FHWA, 2001). 

The quality check criteria in Prep-ME is that the axle weight should be distributed 

among the provided specific limits, as shown in Fig. 3.7 and Fig. 3.8. 

 

Fig. 3.7 Front axle load distribution 

 

Fig. 3.8  Tandem Axle Load Distribution for Fully Loaded Truck Traffic 

 

3.3.3 Investigating the Data QC Results 

If the three parameters (peaks of the gross weight histograms, ranges of front 

axle and drive tandem axle weight for fully loaded trucks) are not within the specified 

limits, the data set of the corresponding year, month and lane will be rejected 

automatically by the Prep-ME software. If all the four lanes of a particular moth are 

rejected, the month is rejected as a whole. If any month in a year got rejected by QC, 

the corresponding year data will be considered as failed or rejected by QC. 
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After the automated quality check by the Prep-ME software, daily data for each 

individual month which are rejected by the software via the automatic QC are verified 

based on the following three major parameters: 

• Daily class 9 truck counts (Fig. 3.9). 

• Percent of front axle within TMG tolerance (Fig. 3.10). 

• Percent of tandem axle within TMG tolerance for fully loaded trucks (Fig. 

3.11). 

Any one of them might be a reason for the rejection of data during the quality 

check process. This process can help users to understand potential data problems or 

traffic patterns within that particular month that cannot pass the automated QC. The 

investigation will be further used in the following step for assisted data repair and 

sampling. 

 

Fig. 3.9  Daily Class 9 Truck Counts 

 

Fig. 3.10  Percent of Front Axle within TMG Tolerance 
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Fig. 3.11  Percent of Tandem Axle within TMG Tolerance for Fully Loaded Trucks 

 

3.3.4 Enhancing Data Quality with Assisted Data Repair and Sampling 

After the review process in the previous step, the Prep-ME software provides 

several tools that can perform specific data repair and sampling on the existing data 

sets based on engineering judgments. The Prep-ME software provides interfaces for 

users to review monthly, weekly and daily traffic data. Four sampling and repairing 

operations are designed to analyze and utilize incomplete (that not have a minimum of 

12-month data) or failed data (that cannot pass the automatic TMG data check 

algorithms), including Replacement (Copy and Paste), Sampling Operation (Daily 

Sampling and Monthly Sampling), and Manual Operation (Accept and Reject). 

• Replacement (Copy and Paste) operation can be used to check the 

similarity of the data in adjacent months, opposite direction, or different lane, 

same month but different year, and then identify a suitable month which can 

be used as the “source month” to substitute the failed or missing month (the 

“target month”). 

• Daily Sampling operation can be used as a diagnostic tool to investigate the 

reason(s) for bad data that cannot pass automatic data check for a particular 

month. If the data is good for a specific period of a month and the data set is 

rejected as a whole for that month during the automated QC process, the 

data at the specific period verified to have good quality are sampled and 

represented for the particular month. 

• Monthly Sampling can be used to select twelve months of data with the 
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highest data quality, either right after a WIM system calibration or any 12 

months' data based on engineering judgment. This process can be used 

when many years of data that have passed the automated QC are available. 

• Manual (Accept/Reject) Operation allows users to review and change the 

automated QC results. If the site maintains a good condition with and the data 

sets are considered to be good based on engineering judgement, the data set 

can be manually accepted. 

 

If none of the cases apply, the data are unmodified and they are marked as 

unaccepted. The data sets are manually checked using Prep-ME by month by direction 

and by lane for each station, and the comprehensive quality check process and results 

of 2008 as the example are summarized in Table 3.2. The legends and color coding of 

the data check are shown in Fig. 3.12. 

 

 

Fig. 3.12 Legends for Statewide Traffic Data Check 
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Table 3.2 Statewide WIM Data Check in 2008 

WIMID Dir. Lane# Lane Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 N 3 P             

1 N 4 D             

1 S 1 D     d        

1 S 2 P a,b,d    
 

       

2 N 3 P             

2 N 4 D     b        

2 S 1 D   b      e e e  

2 S 2 P             

3 E 3 P  a,b  a,b,d a,b  b,d  b,d b,d b,d b,d 

3 E 4 D             

3 W 1 D a,b a,b a,b a,b a,b        

3 W 2 P      b,e b  b,e b,e  b,e 

5 N 3 P             

5 N 4 D    a,b a,b a,b a,b a,b     

5 S 1 D a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b 

5 S 2 P  a,b a,b a,b a,b   a,b     

6 E 3 P      
  

     

6 E 4 D      a,b a,b      

6 W 1 D a,b a,b a,b a,b a,b a,b a,b a,b a,b  a,b a,b 

6 W 2 P  a,b,d a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b 

7 E 3 P             

7 E 4 D             

7 W 1 D             

7 W 2 P             

9 E 3 P             

9 E 4 D d   a,d d d a,b,d a,b,d b,d a,b,d b,d b,d 

9 W 1 D             

9 W 2 P b,d b,d b,d b,d      d d b,d 

10 N 3 P a,b a,b a,b         a,b 

10 N 4 D    a,b a,b a,b       

10 S 1 D    a,b a,b a,b a,b a,b a,b    

10 S 2 P a,b a,b a,b a,b a,b        

11 N 3 P             

11 N 4 D       
 

     

11 S 1 D       a,b      

11 S 2 P a,b,d a,d b,d b,d a,d        

16 E 3 P b,d a,b,d           
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WIMID Dir. Lane# Lane Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

16 E 4 D             

16 W 1 D             

16 W 2 P             

21 N 2 D             

21 S 1 D             

22 E 2 D             

22 W 1 D             

23 E 2 D             

23 W 1 D             

27 N 3 P       a,b      

27 N 4 D a,b,d a,b,d a,b,d  a,b        

27 S 1 D             

27 S 2 P a,b,d a,b,d           

28 E 3 P a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d a,b,d 

28 E 4 D a,b,d a,b,d a,b,d a,b,d a,d a,b,d a,b,d a,b,d a,b,d a,b,d a,d a,d 

28 W 1 D   a,b a,b   a,b a,b a,b a,b a,b a,b 

28 W 2 P             

29 E 3 P             

29 E 4 D             

29 W 1 D a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b 

29 W 2 P  a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b  

30 N 3 P             

30 N 4 D             

30 S 1 D      
 

a,b a,b,d a,b,d a,b a,b,d a,b 

30 S 2 P      b.d b.d b.d b.d b.d b.d b.d 

104 N 3 P b.d d b.d        d b,d 

104 N 4 D      a,b       

104 S 1 D 
          

a,b 
 

104 S 2 P b.d b.d         d b.d 

114 E 3 P 
            

114 E 4 D 
            

114 W 1 D 
            

114 W 2 P 
            

118 E 3 P b.d b.d b.d          

118 E 4 D b.d b.d d          

118 W 1 D             

118 W 2 P b.d            
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4. TRAFFIC CHARACTERIZATION AND INPUTS FOR PAVEMENT ME DESIGN 

 

4.1 Required Traffic Inputs 

Traffic is one of the most important inputs in pavement design. Instead of using 

Equivalent Single Axle Load (ESAL) in the 1993 AASHTO Design Guide to characterize 

traffic throughout the pavement design life, the Mechanistic Empirical Pavement Design 

Guide (MEPDG), subsequently named as Pavement ME Design, requires the full axle-

load spectrum traffic inputs for estimating the magnitude, configuration and frequency of 

the loads to accurately determine the axle loads that will be applied on the pavement in 

each time increment of the damage accumulation process (NCHRP 1-37A, 2004). This 

axle load spectra approach is widely viewed as a quantum leap forward in pavement 

design technology, and requires four basic categories of traffic inputs for the structural 

pavement design as follows (NCHRP 1-37A, 2004): 

(1) The base year traffic volume. One important input in this category is annual 

average daily truck traffic (AADTT) of Vehicle Classes 4 through 13. This information 

can be derived from WIM, AVC, or vehicle count data and is available within a state 

highway agency. 

(2) The base year AADTT must be adjusted by using traffic volume adjustment 

factors, including monthly distribution, hourly distribution, class distribution, and traffic 

growth factors. These factors can be determined on the basis of classification counts 

obtained from WIM, AVC, or vehicle count data. 

(3) axle load distribution factors (axle load spectra). The axle load distribution 

factors represent the percentage of the total axle applications within each load interval 

for a specific axle type (single, tandem, tridem, and quad) and truck class (class 4 to 

class 13). The axle load distributions or spectra can be determined only from WIM data. 

(4) general traffic inputs, such as number of axles per truck, axle configuration, 

and wheel base. These data are used in the calculation of traffic loading for determining 

pavement responses. The default values provided for the general traffic inputs are 

recommended if more accurate data are not available. 
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Traffic data collection in accordance with the FHWA’s Traffic Monitoring Guide 

(TMG) would meet the traffic characterization requirements for MEPDG. However, due 

to unlimited resources, to is impractical to obtain site-specific traffic data for any 

pavement design. Therefore, the Pavement ME Design defines a three-level 

hierarchical traffic input system, in regard to the accuracy of axle load spectra data, 

which allows users to have the flexibility of preparing traffic inputs based on the 

availability of data sets and the importance of the design project. The traffic design 

inputs at Level 1 are the most accurate inputs generated from project or segment-

specific weigh-in-motion (WIM) and automatic vehicle classification (AVC) data; the 

traffic design inputs at Level 2 use regional WIM and AVC data and provide 

intermediate accuracy which are generally based on clustering analysis; traffic design 

inputs at Level 3 use regional or statewide default values and provide poor accuracy 

 

4.1.1 Monthly Adjustment Factors 

Based on the traffic counts by class obtained from WIM data, the monthly 

adjustment factors can be calculated: 

(1) Determine the total number of trucks (in a given class) for each 24-hour period. 

(2) Determine the Average Monthly Daily Truck Traffic for each month (AMDTT) in 

the year. 

(3) Sum up the average daily truck traffic for each month for the entire year. 

(4) Calculate the monthly adjustment factors by dividing the average daily truck 

traffic for each month by summing the average daily truck traffic for each month for the 

entire year and multiplying it by 12 as given below: 


=

=
12

1i i
AMDTT

i
AMDTT

12
i

MAF  .........................................................................   (4.1) 

Where 
i

MAF  = Monthly Adjustment Factor for month i; 
i

AMDTT  = Average Monthly 

Daily Truck Traffic for month i. 
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4.1.2 Vehicle Class Distribution 

The vehicle class distribution factors can be determined as follows. The sum of 

Class Distribution Factors (CDF) for all classes should equal 100%. 

AADTT

AADTT
CDF

j

j
=  ...................................................................................   (4.2) 

Where: 
j

CDF = Class Distribution Factor for vehicle class j; 
j

AADTT = Annual 

Average Daily Truck Traffic for class j; AADTT = Annual Average Daily Truck Traffic for 

all classes. Analysis performed at one of the WIM station is shown in Fig. 4.1 for vehicle 

class distribution. Class 5 trucks and Class 9 Trucks contributes the majority of the truck 

traffic. Similar kind of results are observed at other WIM stations, while the magnitude of 

the two peaks vary among stations. 

 

Fig. 4.1 Vehicle Class Distribution 

 

4.1.3 Hourly Truck Distribution 

The hourly data are used to determine the percentage of total trucks within each 

hour as follows: 
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(1) Determine the total number of trucks counted within each hour of traffic data in 

the sample. 

(2) Average the number of trucks for each of the 24 hours of the day in the sample. 

(3) Total the 24 hourly averages from step 3. 

(4) Divide each of the 24 hourly averages from step 2 by the total from step 3 and 

multiply by 100 and get the Hourly Distribution Factors (HDF), which is shown in Equation 

4 (2). The sum of the percent of daily truck traffic per time increment must add up to 100%. 


=

=
24

1j

j

i

i

HATT

HATT
HDF  .................................................................................   (4.3) 

Where: 
i

HDF  = Hourly Distribution Factor for ith one-hour time period; 
i

HATT  = 

Hourly Average Truck Traffic for ith one-hour time period. 

 

4.1.4 Axle Load Distribution Factors 

Axle load distribution factors can be calculated using WIM data to average the 

daily number of axles measured within each load interval of an axle type for a truck 

class divided by the total number of axles for all load intervals (2): 

(1) Find the range containing all weight data from a specific WIM station. 

(2) Count the number of axles in each weight bin for different vehicle classes 

using the following load intervals: 

• Single axles – 3,000 lb to 40,000 lb at 1,000-lb intervals; 

• Tandem axles – 6,000 lb to 80,000 lb at 2,000-lb intervals; 

• Tridem and quad axles – 12,000 lb to 102,000 lb at 3000-lb intervals. 

(3) Summarize the monthly axle load distribution in the previous step and 

determine the axle load spectra for the site. 

The tandem axle distributions of one of the WIM station at both directions are 

shown in Fig. 4.2. Two peaks are observed, one representing empty and the other fully 

loaded tandem axles. 
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Fig. 4.2  Tandem axle distribution spectrum 

 
4.2 Traffic Data Clustering Analysis 

4.2.1 Clustering Procedure 

The purpose of generating Level 2 traffic clustering inputs is to identify the 

similarities in the time-series traffic patterns and classify them into groups. The process 

of developing clusters involves three major steps: firstly, construct a distance matrix for 

each traffic input parameter; secondly, determine the optimum number of cluster for that 

particular parameter; finally, select an algorithm to define clusters (Wang et al., 2011). In 

this study, the distance matrix is constructed for each matrix VCD, ALS, and MDF using 

Euclid distance technique. Considering data matrix X(nxm) with n measurements and m 

variables, the distance matrix D(nxn) is defined as shown in Equation 1 (Li et al. 2015). 

The distance values are calculated to measure the dissimilarity among vectors: the higher 

the value, the less the similarity among those vectors (Li et al. 2015). 











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


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







−=−= 
=     (4.4) 

The number of clusters should be neither too high (fails the purpose of clustering) 

nor too low (loses the significant variations or patterns). Therefore, the optimum number 

of clusters at which adding another cluster does not explain significant variation is to be 

determined. Elbow method (Hardle and Simar 2003) is used to determine the optimal 

number of clusters or K-value, in which the total sum of squares within a cluster is plotted 
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against the number of clusters. The change in slope is observed, and significant change 

(flattens) is considered as optimum K-value. 

Subsequently, K-means clustering technique is performed to identify the clusters 

among datasets. This process starts with K-random vectors that act as centroids, around 

which clustering of each vector to the nearest one is observed, and then the mean of 

each cluster is considered as the new centroid. This process continues till the mean 

becomes the centroid of the cluster. This sequence of procedure to obtain clusters is 

called Lloyd’s algorithm (Hardle and Simar 2003). 

 

4.2.2 Clustering Results 

After removing the QC outliers, missing data is identified and separated. Only data 

that passed the QC is considered for further analysis. The three major datasets are 

generated according to the requirement of traffic input for Pavement ME Design software: 

• Vehicle Class distribution dataset (VCD): a two-dimensional vector with the 

percent of truck traffic (VC4 - VC13) for each month of five years at every 

station.  

• Monthly distribution factor (MDF): multiple two-dimensional vectors with 

percentage of truck traffic per month in a year and similar vectors for each 

year at every station.  

• Axle loading spectrum (ALS): multiple two-dimensional matrices of axle load 

distribution for single, tandem, tridem, and quad axle types. 

 

Considering monthly data for cluster analysis can account the seasonal variation 

of truck traffic also the truck-loading patterns. Twelve months of five-year data from all 

stations are used for clustering analysis. Cluster results of VCD, MDF, and ALS are 

summarized as following using the optimal number of clusters determined above. For 

ALS, datasets are analyzed separately as two-dimensional matrices for single, tandem, 

tridem, and quad axle loading spectrum. Single axles correspond to 3 kips to 40 kips at 

1-kip interval; tandem axles are 6 kips to 80 kips at 2 kips interval; tridem and quad axles 

indicate 12 kips to 102 kips at 3 kips interval. 

• Vehicle Class Distribution: as shown in Fig. 4.3, datasets having a higher 
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proportion of class 9 trucks are grouped as Cluster 1; higher fraction of class 

5 trucks is observed in Cluster 2; approximately similar percent of class 5 and 

class 9 trucks are clustered as Cluster 3.  

• Monthly Distribution Factor (as shown in Fig. 4.4): Cluster 1 consists of 

datasets having pretty consistent truck traffic throughout the year; datasets 

having a higher proportion of truck traffic in March through June are grouped 

as Cluster 2; the Cluster 3 explains the datasets have higher truck traffic in 

the months June through September. 

• Single Axle (Fig. 4.5): Cluster 1 consists high proportion of light axles 

(unloaded trucks) while Cluster 2 contains much higher portion of heavy 

single axles. 

• Tandem Axles (Fig. 4.6): Cluster 3 has dominant very light axles; Cluster 2 

consists of two axle peaks with empty and full loading; Cluster 1 has slightly 

heavier axles as compared to Cluster 2. 

• Tridem Axles (Fig. 4.7): Cluster 1 has dominant very light axles; Cluster 2 

indicates the presence of both very light but distinctive axle peak with partial 

loading axles; in Cluster 3, significant portion of heavy axles with full loading 

are observed. 

• Quad Axles (Fig. 4.8): Cluster 1 has significant proportion of partially loaded 

heavy Quad axles; Cluster 2 is grouped with dominant light axles; while 

Cluster 3 has both significant amount of both light and fully loaded heavy 

axles. 
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Fig. 4.3  Clusters for Monthly VCD Data 

 

Fig. 4.4  Clusters for Monthly Distribution Factor 
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Fig. 4.5  Clusters for Single Axle Loading 

 

Fig. 4.6  Clusters for Tandem Axle Loading 
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Fig. 4.7  Clusters for Tridem Axle Loading 

 

Fig. 4.8  Clusters for Quad Axle Loading 
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4.3 Estimating Level 2 Traffic Inputs 

After identifying and defining the clusters of traffic data, it is necessary to select 

suitable traffic input cluster at a given site for MEPDG design. Thus far, several 

methodologies, including decision tree models, support vector machine models, adaptive 

neuro fuzzy inference system, regression models etc., have been implemented to train 

models by the existing site-specific traffic input clusters and corresponding independent 

variables (Pradhan et al. 2009, Stone et al. 2011, and Wang et al. 2013). In this study, 

decision tree and multinomial logit regression model are particularly investigated. 

Decision tree model can explain and visualize the cluster determination based on each 

independent variable, while the multinomial logit regression model can perform 

regression analysis by considering both discrete, continuous data and provide the relative 

probability of determining one cluster over other. 

 

4.3.1 Selection of Independent Variables 

Based on the literature review (Haider et al. 2011), annual average daily truck 

traffic (AADTT), Truck traffic percentage (% TT), ratio of class 5 trucks to class 9 trucks 

(VC5/VC9), ratio of single unit trucks (class 5 through class 8) to multiple unit trucks (class 

9 through class 13) (SU/MU), rural/urban and functional classification are considered as 

independent variables that may influence the clustering of both VCD and MDF. In addition 

to the variables mentioned above, upon investigating the pattern of ALS clusters, 

significant relation is observed with a fraction of single axles to the tandem axles.   

Correlation analysis is performed for these potential variables to quantify the 

association between two variables. The absolute value of correlation coefficient larger 

than 0.5 indicates highly correlation between two variables which should not be 

considered together in a single model. The interpretation of the correlation matrix as 

shown in Table 4.1 is described below for each variable. 

• The rural or urban classification, function class of highway, average truck 

traffic volume and truck traffic percentage does not have highly correlation 

with any other variable, which can be consider as independent variables. 

• Percentage class 5 trucks are highly correlated with percentage class 9, the 
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ratio of class5 to class 9, and ratio of single unit trucks to multiple unit trucks. 

In other words, no two of them should come together as independent 

variables. In this study, ratio of single unit trucks to multiple unit trucks is 

considered as the fifth independent variable. 

 

Table 4.1 Correlation Matrix for Independent Variables 

Variable Rural.Ur FC VC5% VC9% VC5.VC9 SU.MU MADTT TT 

Rural.Ur 1.00 
       

FC 0.28 1.00 
      

VC5% -0.19 0.44 1.00 
     

VC9% 0.20 -0.47 -0.95 1.00 
    

VC5.VC9 -0.23 0.38 0.71 -0.65 1.00 
   

SU.MU -0.23 0.42 0.83 -0.78 0.91 1.00 
  

MADTT -0.48 -0.46 -0.23 0.24 -0.21 -0.21 1.00 
 

TT 0.45 -0.21 -0.42 0.45 -0.35 -0.41 0.05 1.00 

 

4.3.2 Decision Tree Analysis 

Decision tree is a hierarchical model developed with set of procedure that splits 

dependent variables into homogeneous groups. Wide ranges of tools are available to 

perform recursive partitioning, such as classification and regression tree (CART), chi-

square automatic interaction detector decision tree (CHAID), ID3 classification algorithm 

and C4.5 (Biswajeeth et al. 2013). Classification tree based models are efficient for 

categorical data, which is used to build the decision trees in this analysis. 

In the process of building a decision tree, the complexity parameter (cp) is used to 

control the size of the decision tree and to select the optimal tree size. Complexity ranges 

from 0 to 0.5, smaller value of complexity represents the higher number of splits and 

accuracy. The complexity table for VCD as the example, as shown in Table 4.2, lists their 

complexity parameter, the number of splits (n-split), the resubstitution error rate (rel-

error), the cross-validated error rate (x-error), and the associated standard error (x-std). 

In addition, this algorithm can also rank each independent variable with the percent of its 

influence on the determining cluster (Maechler et al., 2009), as shown in Table 4.3. 
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Table 4.2 Complexity Table for VCD Data 

CP n-split rel-error x-error x-std 

0.497 0 1.000 1.000 0.012 

0.401 1 0.503 0.504 0.012 

0.004 2 0.102 0.108 0.006 

0.002 5 0.092 0.102 0.006 

0.002 11 0.076 0.092 0.006 

0.002 13 0.072 0.088 0.006 

0.002 16 0.065 0.087 0.006 

0.001 19 0.060 0.083 0.005 

0.001 24 0.055 0.080 0.005 

0.001 29 0.051 0.081 0.005 

0.000 33 0.048 0.079 0.005 

0.000 34 0.048 0.079 0.005 

 

Table 4.3 Ranking of Independent Variables for VCD Data (%) 

SU.MU TT AADTT FC Rural.Ur 

65 17 9 8 1 

 

Selecting the number of splits is on a trial and error basis to ensure that the 

decision tree includes a maximum number of influencing variables. The secondary 

criterion is to investigate the complexity parameter and the corresponding error terms. It 

is inefficient to include more number of splits for a small decrease in error. For VCD as 

the example, the decision tree developed to choose VCD cluster is demonstrated in Fig. 

4.9. Each internal node represents an independent variable listed in Table 4.1. SU.MU 

represents the ratio of single unit trucks to multiple unit trucks, TT represents the percent 

of truck traffic, AADTT is the average annual truck traffic, FC is function class of the 

highway if it is interstate, US highway or state highway, and Rural.Ur represents the rural 

or urban classification. Each leaf node represents a class label of the VCD cluster: “a” is 

the Cluster 1 group, “b” represents the Cluster 2 and “c” is Cluster 3. For instance, if the 

design location has the SU.MU ration as 1.3 and having AADTT as 300 can probably 

have the vehicle class distribution similar to Cluster 2. 
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Fig. 4.9  Decision Tree to Choose VCD Cluster 

 

4.3.3 Multinomial Logit Regression Model 

Since one of the selected independent variables and the dependent variable are 

categorical, multinomial logit regression model should be developed. The output of the 

model has a summary block with coefficients and standard errors for each independent 

variable at each corresponding dependent variable category. A one-unit change in a 

variable may affect the probability of dependent variable to the corresponding fraction of 

the coefficient. This regression model can determine the ratio of the probability of 

selecting one cluster over the other for the five independent variables. For instance, 

monthly vehicle class distribution data has three clusters. Cluster-1 has taken base 

criteria and ran the multinomial logit regression model for the independent variables 

SU.MU, TT, MADTT (continues data) and FC (categorical variable). Results as shown in 

Table 4.4 from the coefficient block can be interpreted as the equation given below. The 

low standard errors for the coefficients indicate their sufficiency of the variables used in 

the model. 
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𝐿𝑛 (
𝑃(𝐶𝑙𝑢𝑠𝑡𝑒𝑟 i)

𝑃(𝐶𝑙𝑢𝑠𝑡𝑒𝑟 1)
)

= 𝑐𝑖 + 𝑐 𝑆𝑈
𝑀𝑈

(
𝑆𝑈

𝑀𝑈
) + 𝑐𝑆𝐻(𝑆𝐻) + 𝑐𝑈𝑆(𝑈𝑆) + 𝑐%𝑇𝑇(% 𝑇𝑇) + 𝑐𝑀𝐴𝐷𝑇𝑇(𝑀𝐴𝐷𝑇𝑇) 

For instance, assuming a site with 9 times higher amount of single unit trucks than 

multiple unit trucks and classified as state highway with 10 percent truck traffic, 1900 

monthly average truck traffic, probability of cluster 2 over cluster 1 is higher than 

probability of cluster 3 over 1. This particular location can be classified as Cluster-2. 

 

Table 4.4 Coefficients Block for VCD data 

Variable C2 vs. C1: 
Coefficient 

C2 vs. C1: 
Standard error 

C3 vs. C1: 
Coefficient 

C3 vs. C1: 
Standard error 

(Intercept) -19.635 0.021 -14.108 0.026 

SU.MU 34.572 0.041 30.279 0.043 

FC_SH 1.066 0.037 0.459 0.041 

FC_US 1.280 0.041 1.053 0.048 

TT -0.006 0.011 0.056 0.008 

MADTT 0.000 0.000 0.000 0.000 

 

4.4 Pavement ME Design Case Study 

To demonstrate the implementation of proposed decision tree model and 

multinomial logit regression model for traffic data cluster selection, a case study of 

Pavement ME Design is performed considering different levels of traffic inputs. The layer 

structure of the case study flexible pavement is shown in Fig.4.10. The initial two-way 

AADTT of this site is 6483. Two Oklahoma Department of Transportation (ODOT) mix 

types: S3 and S4 (ODOT, 2009), are used in the surface and binder layers. In order to 

evaluate the variation of pavement performance predicted by MEPDG software, the 

following four different traffic inputs scenarios are considered: 

• Scenario-1: Level 1 Site specific traffic inputs derived from WIM 021. 

Significant proportion of heavier truck traffic is observed on US-69 within 

Muskogee County, corresponding site-specific data can be obtained for the 

WIM station 021. 
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• Scenario-2: Level 2 cluster specific traffic inputs based on decision tree 

model. 

• Scenario-3: Level 2 cluster group traffic inputs based on Multinomial logit 

regression model. 

• Scenario-4: Level 3 statewide average traffic inputs. Irrespective of location or 

traffic patterns or independent variables, average of traffic data form every 

station within Oklahoma is considered as input.  

 

Fig. 4.10  Case Study Flexible Pavement Structure 

 

Fig. 4.11  Comparisons of VCD under Four Scenarios 

 

As shown in Fig. 4.11, Level 2 vehicle class distribution is similar to the site specific 

Level 1 traffic inputs, while statewide Level 3 traffic inputs is significant different from site-

specific traffic data sets. The performance of flexible pavement for 20-year design life 
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includes international roughness index (IRI), pavement total rutting, fatigue cracking, 

which are obtained from the Pavement ME Design software (Version 2.3) (shown in Fig. 

4.12, Fig. 4.13, Fig. 4.14). If using pavement performance derived from Level 1 site-

specific traffic inputs as the benchmark, Level 2 scenarios generates more accurate 

predictions than those from Level 3 statewide average inputs. In addition, it is observed 

that the equivalent single axle loading (ESALs) during the design life for the four scenarios 

vary significantly, especially if Level 3 inputs are used (Fig. 4.15). 

 

Fig. 4.12  Comparisons of Predicted IRI 

 

Fig. 4.13  Comparisons of Predicted Rutting 
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Fig. 4.14  Comparisons of Predicted Fatigue Cracking 

 

Fig. 4.15  Comparisons of Design ESALs 

 
4.5 Prep-ME Software Implementation 

Pavement ME Design provides users with the flexibility of preparing three levels of 

traffic inputs based on the availability of traffic data sets and the importance of the design 

project. Ideally, Level 1 traffic inputs for Pavement ME Design can be obtained from a 

WIM system operating continuously at the design site over extended periods of time. In 

practice, however, in most cases when new pavements are designed, no prior Level 1 

traffic WIM data are available. In such case, Levels 2 traffic inputs are considered for 

design by combining existing site-specific data from WIM systems located on sites that 

exhibit similar traffic characteristics. Level 3 inputs provide the lowest level of accuracy, 

and typically average values for the region. Prep-ME can generate all the three traffic 

level of data for Pavement ME Design, as shown in Fig. 4.16. 
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Fig. 4.16 Three-Level traffic outputs for Pavement ME Design 

 

For Level 1 input, Prep-ME allows users to export site-specific traffic data “By 

Direction” or “By Station”. The data shown by station contains the average data for both 

directions whereas the data shown by direction is only for the specified direction.  

Based on the analysis results presented in Section 4.4.1, a new clustering method 

is proposed for Level 2 traffic input in Oklahoma, and implemented in Prep-ME. The rural 

or urban classification, function class of highway, average daily truck traffic volume 

(AADT) and ratio of single unit and multiple unit trucks (SU/MU) are adopted as the 

clustering parameters for generating Pavement ME Design traffic inputs (Fig. 4.17). Three 

levels, low, medium, and high, are defined for the “SU/MU” and ADTT parameters. The 

traffic stations that meet the criteria of the four retrieving parameters will be used to 

generate Level 2 traffic inputs for Pavement ME Design. 
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Fig. 4.17 Proposed ODOT Level 2 Method 

In addition, the Prep-ME software includes the TTC approach and simplified TTC 

approach are shown in Fig. 4.18 and Fig. 4.19, which have much simpler user interfaces 

and less data requirements. The TTC approach requires manual traffic counts for vehicle 

classes 4, 5, 9, and 13 to determine the cluster of a pavement under design; while the 

simplified TTC approach only need engineers' judgment on the majority classes of trucks 

on a roadway. The two methods can be used for lower volume roads or design sites 

without relevant traffic data inputs. 
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Fig. 4.18 TTC Approach 

 
Fig. 4.19 Simplified TTC Approach 
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In many cases, traffic engineers are familiar with the traffic patterns on the highway 

segments where WIM stations are located. Based on local engineering judgment, traffic 

engineer may decide to use the data from the WIM stations on US-69 in Oklahoma, for 

example, for a major arterial pavement design in the same area. The "Flexible Clustering" 

method is available in the Prep-ME software that allows user to apply local engineering 

judgment and select WIM sites with similar traffic patterns for the traffic data preparation 

for Pavement ME Design, as shown in Fig. 4.20. Since "Flexible Clustering" doesn't use 

any statistical methodology, the desired number of clusters for each parameter is one. 

Users only need to manually select relevant WIM stations for traffic data export for the 

traffic parameters. The example in Fig. 4.20 uses all the WIM stations on US-69 to 

generate Single Axle Load Distribution factors.  

 
Fig. 4.20 Flexible Clustering Method 

 

For level 3 output, three methods are provided in Prep-ME: State Average, LTPP-

5(004) and Pavement ME Default. 

For each output level, Prep-ME can automatically process Pavement ME Design 

required traffic data.  By clicking "View Output Data" button in Fig. 4.21, users can view 

four types of traffic data: Vehicle Class Distribution (VCD), Hourly Distribution Factors 

(HDF), Monthly Adjustment Factors (MAF), Axle Load Distribution Factors (ALDF) 

including those for single, tandem, tridem, and quad axles, as shown in Figure 4.1. Prep-
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ME also allows users to generate mixed levels of traffic inputs. The traffic files can be 

output in XML format for Pavement ME Design and text format for the MEPDG software. 

The generated output files can be directly imported to the ME design software, and greatly 

reduced pavement engineers' work load preparing traffic loading spectra data. 

 

 

Fig. 4.21 Viewing Cluster Traffic Results 
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5. LTPP TRAFFIC INPUT DATA IN OKLAHOMA 

 

5.1 LTPP Data Sources 

The Long Term Pavement Performance (LTPP) issues Standard Data Release 

(SDR) each year. The SDR-27 (January, 2013) was used to develop the traffic input 

parameters for this study. In LTPP, each state is assigned a state code; Oklahoma’s state 

code in LTPP is “40”. According to the data supplied by ODOT, LTPP uses a total of 15 

Weigh-in-Motion (WIM) stations from Oklahoma to collect the traffic data. Table 5.1 

presents the locations of those WIM stations along with their Strategic Highway Research 

Program (SHRP) identity. 

 

Table 5.1 WIM Sites with SHRP ID for Oklahoma 

Site Highway Lane of study Latitude Longitude * SHRP ID. 

WIM001 US-75 / Bartlesville North Bound 36.636900 -95.935092 4155 

WIM001 US-75 / Bartlesville  South Bound 36.636900 -95.935092 4158 

WIM003 I-240 / OKC West Bound 35.391594 -97.449061 3018 

WIM005 US-59 / Mazie North Bound 36.074053 -95.364325 4157 

WIM007 US-270 / Watonga West Bound 35.841792 -98.468253 4163 

WIM009 SH-3 / Ada West Bound 34.755883 -96.687108 4160 

WIM010 US-69 / McAlester North Bound 35.068658 -95.704933 4166 

WIM011 US-81 / Rush Springs South Bound 34.730339 -97.958519 4154 

WIM016 US-412 / Chouteau West Bound 36.170183 -95.387408 5021 

WIM022 SH-112 / Poteau unknown 35.105667 -94.615008 6010 

WIM023 US-412 / Ringwood West Bound 36.391300 -98.285628 4165 

WIM027 I-35 / Blackwell South Bound 36.746233 -97.345475 0600 

WIM104 I-35 / Edmond North Bound 35.733764 -97.416647 7024 

WIM118 US-62 / Cache West Bound 34.638367 -98.655322 0500 

WIM118 US-62 / Cache East Bound 34.638367 -98.655322 0100 

* SHRP ID are only the last four digits. 

To check the quality of the LTPP traffic data and to compare this database with the 

developed traffic input parameters from the ODOT WIM sites using Prep-ME software, it 

was decided to develop traffic input parameters from the selected eight LTPP stations for 

different years. In general, three years of data from each of these eight LTPP stations 
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were used for this purpose (e.g, 2007, 2009 and 2011). Fig. 5.1 presents these selected 

eight LTPP stations.  

 

Fig. 5.1  Selected SHRP WIM Sites in Oklahoma 

 

For the first year of the project, it was decided to develop and analyze the traffic 

input parameters from four stations located geographically approximately at four corners 

of the state. Those four stations are shown in Table 5.2: 

 

Table 5.2  Data Analyses Performed for the LTPP WIM Sites 

Site Highway Lane of study Latitude Longitude * SHRP ID. 

WIM010 US-69 / McAlester North Bound 35.068658 -95.704933 4166 

WIM016 US-412 / Chouteau West Bound 36.170183 -95.387408 5021 

WIM027 I-35 / Blackwell South Bound 36.746233 -97.345475 0600 

WIM118 US-62 / Cache East Bound 34.638367 -98.655322 0100 

 

In this study, three major types of traffic inputs were developed for the 

AASHTOWare software: a) Vehicle Class Distribution Factors, b) Monthly Adjustment 
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Factors, and c) Axle Load Spectra. These data were obtained from the LTPP database 

and then were analyzed and formatted in the AASTOWare software readable format. This 

database will be supplied to ODOT electronically so that the ODOT pavement engineer 

can call the data from the database easily using the AASTOWare software. Data from 

different stations and high level comparison between different stations are briefly 

described in the following paragraphs: 

5.2 Vehicle Class Distribution 

Vehicle Class Distribution Factors were developed using the vehicle classification 

guideline of the FHWA. FHWA divides all the vehicles traveling in the US highway in a 

total of 13 classes. It should be note that the developed VCD in this study from the LTPP 

sections are for truck traffic only (FHWA vehicle Class 4 through 13). Fig. 5.2 and Fig. 5.3 

show the vehicle class distribution factors from three years of data for the SHRP stations 

0100 (US 62/ Cache) and 5021 (US-412/ Chouteau), respectively. This can be observed 

from these figures that Class 9 vehicles had the highest percentage (approximately 40 to 

60%) among all the trucks, followed by Class 5 vehicles (approximately 20 to 40%). 

However, the SHRP 5021 location has more Class 9 vehicles (percentage wise) than 

SHRP 0100 location. In addition, from the vehicle count data it was found that the SHRP 

5021 location had approximately 0.4 million trucks compared to approximately 0.15 

million trucks in the SHRP 0100 location.  
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Fig. 5.2 VCD for SHRP 0100 

 

Fig. 5.3  VCD for SHRP 5021 
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Tables 5.3 and 5.4 also show the percentage of each vehicle class in the 

respective years, along with the minimum, maximum and standard deviation for the 

respective vehicle classes during these years for SHRP location 0100 and 5021, 

respectively. It was also observed from Tables 3.3 and 3.4 that Class 9 and Class 5 

vehicles had the highest standard deviation on these two sites. 

Table 5.3  VCD for SHRP site 0100 

Year VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

2007 1.41 39.09 2.34 0.30 7.83 47.73 0.49 0.44 0.03 0.33 

2008 1.25 39.74 2.61 0.25 8.08 46.95 0.51 0.32 0.03 0.27 

2010 1.63 30.75 2.51 0.43 7.50 55.86 0.52 0.40 0.07 0.33 

Min 1.25 30.75 2.34 0.25 7.50 46.95 0.49 0.32 0.03 0.27 

Max 1.63 39.74 2.61 0.43 8.08 55.86 0.52 0.44 0.07 0.33 

Standard 
Deviation (%) 

0.15 4.09 0.11 0.08 0.24 4.03 0.01 0.05 0.02 0.03 

 

Table 5.4 VCD for SHRP site 5021 

Year VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

2007 1.23 40.61 3.25 0.09 11.49 42.03 0.36 0.54 0.25 0.14 

2009 1.23 46.79 2.63 0.08 11.66 36.58 0.32 0.51 0.11 0.09 

2011 3.06 19.07 4.44 2.77 6.94 61.60 0.50 0.94 0.59 0.11 

Min 1.23 19.07 2.63 0.08 6.94 36.58 0.32 0.51 0.11 0.09 

Max 3.06 46.79 4.44 2.77 11.66 61.60 0.50 0.94 0.59 0.14 

Standard Deviation (%) 0.86 11.89 0.75 1.27 2.19 10.74 0.07 0.20 0.20 0.02 

 

5.3 Monthly Adjustment Factors 

The monthly adjustment factor (MAF) represents the proportion of annual truck 

traffic for a given class of a vehicle that occurs in a specific month. In other words, the 

monthly adjustment factors for a specific month is equal to the monthly truck traffic for a 

given class for the month divided by the total truck traffic for that truck class for the entire 

year. Tables 5.5 and 5.6 present the MAFs for 2007 from the SHRP sites 0100 and 5021, 

respectively. It can be observed from the tables that the MAFs varied from 0.15 to 3.15. 

Based on the standard deviation values reported in the tables, this can be observed that 

Class 7 vehicles had the maximum variation in MAF values in these two locations. 
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Table 5.5 MAF for SHRP site 0100 in 2007 

Month VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

January 0.86 0.91 1.12 0.23 0.69 0.9 0.64 0.7 0.29 1.06 

February 0.84 0.85 0.72 0.18 0.75 0.87 0.88 0.6 0.86 0.74 

March 1.11 1.04 0.88 0.15 0.96 1 1.2 0.84 0.29 0.9 

April 1.22 0.95 0.83 0.61 0.95 0.93 1.02 1.06 1.43 1.06 

May 1.04 1.05 1.21 0.93 1.08 1.03 0.95 1.95 1.71 1.4 

June 0.94 1 1.15 0.38 1.17 0.99 0.88 0.92 1.71 1.14 

July 0.89 1.03 1.04 0.93 1.22 1.03 1 1.26 1.14 1.09 

August 0.94 1.09 1.15 1.87 1.29 1.07 1.05 1.04 0.57 1.14 

September 1.16 1.02 0.87 0.41 1.05 0.89 1.02 0.74 0.29 0.85 

October 1.28 1.04 1.13 3.15 1.14 1.25 1.05 1.1 0.86 0.69 

November 1.04 1.03 1.03 2.48 0.98 1.09 1.38 0.72 1.14 0.9 

December 0.69 0.99 0.87 0.67 0.72 0.96 0.95 1.04 1.71 1.03 

Min 0.69 0.85 0.72 0.15 0.69 0.87 0.64 0.60 0.29 0.69 

Max 1.28 1.09 1.21 3.15 1.29 1.25 1.38 1.95 1.71 1.40 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Standard Deviation 0.17 0.06 0.15 0.94 0.19 0.10 0.17 0.34 0.54 0.19 

 

Table 5.6 MAF for SHRP site 5021 in 2007 

Month VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

January 0.61 0.83 0.72 1.2 0.57 0.77 0.72 0.68 0.47 0.65 

February 0.84 1.06 0.87 1.73 0.74 0.98 0.77 0.9 0.96 1.01 

March 1.19 1.3 1.1 1.23 1.06 1.18 1.17 1.01 0.87 1.47 

April 1.04 1.2 1.04 1.17 0.96 1.02 1.19 0.97 0.76 1.11 

May 1.16 1.49 1.07 1.03 1.13 1.06 1.13 1.11 0.74 0.92 

June 0.99 0.83 0.93 0.8 1.02 0.86 0.69 0.97 0.94 0.8 

July 0.98 1.12 1.18 0.97 1.31 1 1 1.17 1.15 1.21 

August 1.13 1.15 1.2 1.33 1.24 1.05 1.39 1.25 1.37 1.21 

September 1.02 0.83 0.9 0.63 1.2 0.98 1.11 1.03 1.22 1.07 

October 1.21 0.82 1.04 0.67 1.2 1.11 1.09 1.08 1.29 0.86 

November 0.99 0.71 1.04 0.7 0.89 1.08 0.91 1 1.34 0.86 

December 0.84 0.66 0.92 0.53 0.68 0.93 0.83 0.83 0.9 0.84 

Min 0.61 0.66 0.72 0.53 0.57 0.77 0.69 0.68 0.47 0.65 

Max 1.21 1.49 1.20 1.73 1.31 1.18 1.39 1.25 1.37 1.47 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Standard Deviation 0.17 0.25 0.13 0.34 0.23 0.11 0.21 0.15 0.27 0.22 
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5.4 Axle Load Distribution 

The axle load distribution factors represent the percentage of total axle 

applications within each load interval for a specific axle type and vehicle class (classes 4 

to 13). Definition of load intervals for different axle types is provided below: 

• Single Axles: 3 kips to 40 kips, at 1-kip interval. 

• Tandem Axles: 6 kips to 80 kips, at 2 kips interval. 

• Tridem and Quadrem Axles: 12 kips to 102 kips at 3 kips interval. 

Axle load spectra for four axle types (single, tandem, tridem and quad) for all 

vehicles were developed using the LTPP WIM data for approximately three years for each 

stations. The axle load spectra were developed in the AASHTOWare readable format and 

will be supplied to ODOT. For reporting purposes, Tables 5.7 and 5.8 represent the single 

and tandem axle load spectra developed only for the year of 2007 for SHRP site 5021. 

This can be observed from the tables that all the vehicle classes have single axles. Class 

5 did not have tandem axles, so axle load spectra for these vehicle classes were 

unavailable and therefore was shown as 0.00 in the Table 5.8.  

Since, it was observed that Class 9 vehicles are predominant (approximately 40 to 

60%), among all vehicle classes, axle load distribution for Class 9 was further analyzed. 

Fig. 5.4 and Fig. 5.5 show the axle load spectra for the year 2007 of SHRP sites 0100 

and 5021 for the single and tandem axles of Class 9 vehicles, respectively. It is observed 

from Fig. 5.4 that for single axles the distribution peaks around 11-kips axle loads, which 

is the expected range for Class 9 single axles (Tran and Hall, 2007). It can be observed 

from Fig. 5.5 that there are two distinct peaks for the tandem axle distribution: one 

between 10 and 16-kips, and the other between 26 and 34-kips. 

  



Development of Statewide WIM Data Quality Control and  Final Report 
Axle Load Spectra and Traffic Volume Adjustment Factors for Oklahoma September 2018 

62 

Table 5.7 Single-Axle Load Spectra for 2007 of SHRP site 5021 

Axle Load 
(lb) 

VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

3,000 0.00 9.94 0.23 1.28 4.53 0.57 0.13 0.00 0.00 0.00 

4,000 0.00 34.91 0.90 1.88 14.18 2.40 1.06 0.83 10.33 0.55 

5,000 0.00 24.51 1.87 2.02 20.19 3.63 1.76 3.95 30.37 3.37 

6,000 0.11 13.73 5.48 4.15 19.74 3.15 2.55 8.99 11.35 7.38 

7,000 0.65 4.59 7.15 5.11 10.11 1.90 3.10 8.49 3.79 7.06 

8,000 23.14 3.62 9.61 3.59 9.67 5.93 8.06 10.98 10.20 11.57 

9,000 14.71 2.24 13.15 9.32 6.61 14.38 14.09 13.96 10.39 16.03 

10,000 17.05 2.15 23.64 16.45 5.73 31.97 29.29 16.89 6.72 19.04 

11,000 13.01 1.18 14.35 11.74 2.94 19.30 22.24 8.04 2.67 10.79 

12,000 12.45 0.96 10.75 13.57 2.03 7.54 11.22 8.15 3.16 7.55 

13,000 5.87 0.50 5.09 7.11 1.23 1.67 3.29 5.58 2.67 4.94 

14,000 5.19 0.45 3.71 9.76 0.89 1.65 1.39 5.41 2.70 3.25 

15,000 2.78 0.39 1.78 6.00 0.70 1.74 0.83 3.80 2.37 2.24 

16,000 1.72 0.23 0.98 3.33 0.38 1.32 0.29 2.41 1.24 1.27 

17,000 1.42 0.20 0.76 2.36 0.32 1.22 0.35 1.35 0.85 1.45 

18,000 0.75 0.11 0.35 0.00 0.18 0.64 0.16 0.54 0.52 0.92 

19,000 0.46 0.07 0.12 0.94 0.17 0.46 0.06 0.41 0.37 0.88 

20,000 0.24 0.03 0.04 0.00 0.10 0.22 0.13 0.13 0.21 0.53 

21,000 0.21 0.03 0.03 1.39 0.10 0.16 0.00 0.03 0.06 0.48 

22,000 0.09 0.02 0.00 0.00 0.07 0.06 0.00 0.04 0.02 0.17 

23,000 0.08 0.02 0.00 0.00 0.06 0.04 0.00 0.01 0.02 0.26 

24,000 0.03 0.01 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.09 

25,000 0.00 0.02 0.00 0.00 0.02 0.02 0.00 0.01 0.00 0.10 

26,000 0.02 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.09 

27,000 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

28,000 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

29,000 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

30,000 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

31,000 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

32,000 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

33,000 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

34,000 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

35,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

36,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

37,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

38,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

39,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

40,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

41,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 5.8  Tandem-Axle Load Spectra for 2007 of SHRP site 5021 

Axle Load 
(lb) 

VC4 VC5 VC6 VC7 VC8 VC9 VC10 VC11 VC12 VC13 

6,000 0.00 0.00 0.74 0.24 5.15 0.85 0.48 0.00 0.00 0.00 

8,000 0.33 0.00 4.79 0.72 8.88 3.58 1.13 0.00 3.14 0.81 

10,000 4.85 0.00 14.40 1.75 10.46 8.20 0.99 0.00 34.58 13.50 

12,000 12.31 0.00 11.60 2.28 16.50 11.90 3.42 6.13 21.74 13.76 

14,000 9.41 0.00 10.37 0.23 19.79 11.84 5.43 22.50 5.21 11.59 

16,000 7.69 0.00 6.37 1.62 13.48 7.72 9.95 24.23 3.83 11.09 

18,000 4.97 0.00 3.69 2.40 8.24 5.39 11.15 23.80 8.18 7.69 

20,000 7.11 0.00 3.71 1.39 4.86 4.89 9.41 8.32 7.09 6.50 

22,000 9.43 0.00 5.01 2.45 3.39 5.42 8.74 5.04 4.38 4.51 

24,000 9.59 0.00 4.90 5.30 2.40 6.38 9.26 4.15 2.18 3.09 

26,000 9.33 0.00 5.02 7.83 1.85 7.54 6.84 2.42 1.31 3.05 

28,000 8.47 0.00 5.16 9.94 1.32 8.07 8.18 1.74 2.00 3.63 

30,000 6.49 0.00 5.11 9.92 1.04 6.93 6.72 0.74 1.27 2.98 

32,000 3.84 0.00 5.48 7.53 1.03 5.18 5.42 0.93 1.40 3.93 

34,000 2.92 0.00 4.54 2.53 0.70 3.17 4.04 0.00 1.99 3.00 

36,000 1.04 0.00 2.97 3.06 0.38 1.60 3.17 0.00 0.37 2.45 

38,000 0.59 0.00 2.26 6.83 0.21 0.77 2.32 0.00 0.34 2.23 

40,000 0.83 0.00 1.54 6.25 0.13 0.33 1.66 0.00 0.27 1.47 

42,000 0.39 0.00 0.92 3.24 0.08 0.14 0.58 0.00 0.36 1.46 

44,000 0.23 0.00 0.70 6.58 0.05 0.06 0.23 0.00 0.19 1.19 

46,000 0.10 0.00 0.37 2.12 0.02 0.03 0.20 0.00 0.19 0.94 

48,000 0.00 0.00 0.17 3.03 0.02 0.01 0.15 0.00 0.00 0.66 

50,000 0.05 0.00 0.13 2.71 0.01 0.00 0.24 0.00 0.00 0.34 

52,000 0.00 0.00 0.04 2.17 0.00 0.00 0.21 0.00 0.00 0.00 

54,000 0.00 0.00 0.02 1.48 0.00 0.00 0.00 0.00 0.00 0.00 

56,000 0.00 0.00 0.00 1.55 0.00 0.00 0.00 0.00 0.00 0.00 

58,000 0.00 0.00 0.01 1.30 0.00 0.00 0.08 0.00 0.00 0.00 

60,000 0.04 0.00 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.14 

62,000 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 

64,000 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 

66,000 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 

68,000 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 

70,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

72,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

74,000 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 

76,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

78,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

80,000 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

82,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Fig. 5.4 Class-9 Single Axle Load Spectra for SHRP sites 0100 and 5021 

 

Fig. 5.5 Class-9 Tandem Axle Load Spectra for SHRP sites 0100 and 5021 
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6. MATERIAL DATA IN OKLAHOMA FOR PAVEMENT ME DESIGN 

 

6.1 Introduction 

Good quality materials data are essential for efficient pavement design using 

MEPDG. Throughout the years, ODOT and OkTC has sponsored multiple projects in 

producing these data. Among these data, particular area of interest is focused on three 

types of valuable materials input for flexible pavements:  resilient modulus (Mr) data for 

natural subgrade, stabilized subgrade, and aggregate base materials; dynamic modulus 

data for asphalt mixes, and dynamic shear modulus and phase angle data for asphalt 

binders. Through this project, the research team has investigated the available data for 

(1) the resilient modulus of Oklahoma subgrade materials, and (2) dynamic modulus of 

asphalt mixes along with phase angle data of asphalt binders, and also performed the 

quality check of those data sets. In addition, software interfaces have been developed for 

users to retrieve material inputs for the AASHTOWare Pavement ME Design software. 

 

6.2 Resilient Modulus Data 

6.2.1 Natural Subgrade 

The ODOT database on the natural subgrade’s resilient modulus is an extensive 

one which consists of over 10,000 resilient modulus values. Geographical locations of the 

sampling sites for the Mr database of natural subgrade materials are shown in Fig. 6.1. 

The database included the resilient modulus values from a wide range of soil series (B 

and C horizon) prevalent in Oklahoma. In addition, the database also included different 

types of soils comprising of clay, sand and silt mostly obtained by the “In-place Soil 

Survey” and “Shoulder Soil Survey” from ODOT projects. The quality control review of the 

resilient modulus data from the unbound natural subgrade have been carefully checked 

by working closely with ODOT engineers. The QC process divides the resilient moduli 

data into three classifications: a) Good, b) Bad, and c) Questionable data. This database 

can be further sorted out based on the county, soil series, soil types, ODOT divisions etc. 
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These data after QC process are then included in the Prep-ME software so that ODOT 

engineers can call the data from a unified Mr database. 

 

Fig. 6.1  Location of MR sampling sites (Hossain et al., 2011) 

6.2.2 Stabilized Subgrade 

The ODOT Mr database for the stabilized subgrade consists of soils from four 

different soil series: Carnasaw series (C-soil; 39 samples), (2) Port series (P-soil: 35 

samples), (3) Kingfisher series (K-soil: 31 samples), and (4) Vernon series (V-soil: 34 

samples). These soils were classified as A-4 (P-soil), A-6 (K- and V-soil), and A-7-6 (C-

soil), as shown in Fig. 6.2. Each soil series were mixed with three different stabilizing 

materials commonly used in Oklahoma: hydrated lime (0%, 3%, 6%, 9% by dry soil unit 

weight), Class C fly ash (0%, 5%, 10%, and 15% by dry soil unit weight), and Cement 

Kiln Dust (CKD) (0%, 5%, 10%, and 15% by dry soil unit weight). 

Details regarding the stabilization and discussions on the effects of stabilizing 

agents have been reported in Hossain et al. (2011) and Solanki et al. (2010). It was 

observed that stabilizing the soil increased their Mr values significantly. For example, 3% 

lime increased the Mr values of P-, K-, V-, and C-soils approximately by 435%, 1,647%, 

914%, and 123%, respectively. Although the addition of stabilizing agents increased the 

Mr values from the unstabilized cases, a reduction in Mr values were observed beyond a 

certain percentage of lime. For example, K-soil specimens stabilized with 9% lime showed 

a 28% decrease in Mr values as compared to specimens stabilized with 6% lime (Solanki 
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et al., 2010). In case of CFA, 15% additive showed a maximum increase in Mr values of 

approximately 983%, 1,449%, 1,203%, and 215% for P-, K-, V- and C-soil, respectively, 

as compared to raw soil. Similar to CFA, 15% CKD showed the maximum increase in Mr 

values for all four soil types. With 15% CKD, the Mr values increased as much as 1,963%, 

2,998%, 2,001%, and 691% for P-, K-, V-, and C-soil, respectively (Hossain et al., 2011). 

Fig. 6.3 shows the variation of Mr values with different soil and additive types. 

 

Fig. 6.2 Location Map of Stabilized Subgrade Source Sites 

 

Fig. 6.3 Variation of MR values with Soil and Additive Type (σd = 6 psi, σ3 = 4 psi) 

(Hossain et al., 2011) 
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6.2.3 Aggregate Base 

A total of 105 samples from two commonly used aggregates (limestone and 

sandstone) were tested to develop the Mr database for aggregate base materials in 

Oklahoma (Hossain et al., 2011). Limestone aggregates were obtained from Meridian 

quarries in Marshal County, and from Richard Spurs quarries in Comanche County; 

whereas Sandstone aggregates were from Sawyer quarry in Choctaw County, as shown 

in Fig. 6.4.  

Default Mr values for limestone and sandstone aggregates are calculated using 

the average material constants obtained from regression modeling and are presented in 

Table 6.1. These Mr values can be used as Level 3 input in the MEPDG analysis and 

design. It was observed that the predicted typical Mr values obtained from different 

models are in agreement with each other, and the variations of Mr values among different 

models were within 4%. However, all of these models would result in conservative 

designs compared to the MEPDG recommended typical values. In general, limestone 

aggregate showed higher (51%) Mr values than those of sandstone aggregate. This could 

be due to the fact that Richard Spurs or Meridian limestone aggregate contained bigger 

size particles with higher interlocking potential than Sawyer sandstone aggregates. 

According to the AASHTO T 145 specifications, all these aggregates are classified as A-

2-4. 

 

Fig. 6.4 Location Map of Base Aggregate Source Sites. 
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Table 6.1 Recommended Mr Values for Tested Oklahoma Aggregates 

Aggregate 
Source and Type 

AASHTO 
Classification 

MEPDG 
Default, 

ksi (MPa) 

Estimated 
from Model 2, 

ksi (MPa) 

Estimated 
from Model 3, 

ksi (MPa) 

Estimated 
from Model 4, 

ksi, (MPa) 

Meridian & RS 
Limestone 

A-2-4 
32.0 

(220.63) 
14.1 

(97.42) 
14.3 

(98.40) 
14.2 

(98.03) 

Sawyer sandstone A-2-4 
(32.0) 

(220.63) 
9.0 

(62.35) 
9.4 

(65.12) 
9.3 

(64.03) 

 

6.3 Dynamic Modulus Data 

6.3.1 Asphalt Binder 

Literature review was performed to search for the existing test information 

regarding the asphalt binders. Dynamic Shear Modulus (G*) and Phase Angle (δ) values 

are required as Level 1 input for the asphalt binder in the AASTOWare software. A report 

titled “Development of Flexible Pavement Database for Local Calibration of MEPDG (SPR 

2209), June (2011) (Hossain et al., 2011)” was particularly helpful in finding the data on 

the asphalt binders. Three different Performance Grade (PG) binders are typically used 

in Oklahoma: PG 64-22, PG 70-28, and PG 76-28. In the referenced study (Hossain et 

al., 2011), these three types of binder were collected from three different refineries in 

Oklahoma: NuStar from Catoosa, Valero from Ardmore, and Asphalt Terminal and 

Transportation (ATT) from Muskogee. Superpave binder test protocol (AASTO T315) 

were followed to determine the G* and δ of these binders. Table 6.2 presents the G* and 

δ values for these three different types of binder at various testing temperatures. 
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Table 6.2  MEPDG Level 1 Inputs of Asphalt Binders 

Binder 
Type 

Testing 
Temp. 

(°C) 

NuStar @ 
Catoosa: 
G* (kPa) 

NuStar 
@ 

Catoosa: 
δ (deg) 

Valero @ 
Ardmore: 

G* (kPa) 

Valero @ 
Ardmore: 

δ (deg) 

ATT @ 
Muskogee: 

G* (kPa) 

ATT @ 
Muskogee: 

δ (deg) 

PG64-22 54.4 9.28 80.63 10.32 78.70 13.80 81.20 

PG64-22 46.1 32.47 76.10 34.20 73.60 48.99 76.90 

PG64-22 43.3 46.98 74.70 56.52 71.00 75.55 74.80 

PG64-22 29.4 344.36 63.77 402.11 63.70 407.86 66.60 

PG64-22 21.1 1030.38 60.77 1869.11 45.50 911.32 48.30 

PG64-22 12.7 4870.00 55.90 4574.00 48.80 8606.19 50.80 

PG64-22 4.4 18300.00 53.30 23778.84 47.00 19848.75 49.60 

PG70-28 54.4 12.14 65.70 15.54 49.40 12.20 63.30 

PG70-28 46.1 28.31 64.60 32.92 51.30 31.80 63.80 

PG70-28 43.3 40.56 64.20 44.01 51.90 46.27 64.10 

PG70-28 29.4 268.41 60.80 229.39 54.20 333.00 63.50 

PG70-28 21.1 1061.36 54.40 861.58 49.20 1720.00 52.00 

PG70-28 12.7 4040.00 52.20 3796.25 49.10 4155.00 50.60 

PG70-28 4.4 15200.00 50.40 13875.00 48.10 14528.50 48.40 

PG76-28 54.4 13.93 59.40 14.09 50.30 12.64 59.90 

PG76-28 46.1 33.39 59.40 30.03 51.90 30.79 61.30 

PG76-28 43.3 47.15 59.40 40.47 52.40 44.05 62.00 

PG76-28 29.4 274.68 58.80 181.40 56.60 322.22 62.90 

PG76-28 21.1 1025.48 52.70 548.47 58.10 1478.04 53.30 

PG76-28 12.7 5010.00 53.80 3287.20 47.50 5823.44 52.30 

PG76-28 4.4 17800.00 51.80 13726.25 46.50 20450.98 46.00 

 

6.3.2 Asphalt Mix 

The dynamic modulus (E*) of hot-mix asphalt (HMA) is one of the key parameters 

used to evaluate both rutting and fatigue cracking distresses in the MEPDG. Many state 

agencies, including ODOT, have conducted comprehensive dynamic modulus laboratory 

testing based on state local materials and mix design specifications. 

Dynamic modulus values for the mixes were measured in the laboratory in 

accordance with AASHTO TP62 specifications. Tests were performed using a mechanical 

testing system (MTS) equipped with a servo-hydraulic testing system. The test specimen 

was placed in an environmental chamber and allowed to reach equilibrium to the specified 

testing temperature ±0.5oC. The specimen temperature was monitored using a dummy 

specimen with a thermocouple mounted at the center. Two linear variable differential 

transducers (LVDTs) were mounted on the specimen at 100 mm gauge length. Two 

friction reducing end treatment or teflon papers were placed between the specimen and 
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loading platens. A sinusoidal axial compressive load was applied to the specimen without 

impact in a cyclic manner. The test was conducted on each specimen at four different 

temperatures: 4, 21, 40, and 550C, starting from the lowest temperature and going to the 

highest temperature. For each temperature level, the test was conducted at different 

loading frequencies from the highest to the lowest: 25, 10, 5, 1, 0.5, and 0.1 Hz. Prior to 

testing, the specimen was conditioned by applying 200 cycles of load at a frequency of 

25 Hz. The load magnitude was adjusted based on the material stiffness, temperature, 

and frequency to keep the strain response within 50-150 micro-strains (Tran and Hall, 

2006). The data was recorded for the last 5 cycles of each sequence. Dynamic modulus 

values were calculated for combinations of temperatures and frequencies. Thereafter, the 

master curves were constructed using the principle of time-temperature superposition and 

approach developed by Bonaquist et al. (2005). The amount of shifting at each 

temperature required to form the master curve describes the temperature dependency of 

the material. First, a standard reference temperature is selected (i.e., 21°C), and then 

data at various temperatures are shifted with respect to time until the curves merge into 

a single smooth function.  

Fig. 6.5 shows a general master curves developed for S3 and S4 mixes in 

Oklahoma. It can be seen that the mix (S3) has a higher dynamic modulus values 

compared to the top layer mix (S4) for different combinations of temperature and 

frequency. These master curves are required to estimate the dynamic modulus values for 

both the mixes at wide range of temperature encountered in the field. 
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Fig. 6.5  Dynamic Modulus Master Curve for Top (Surface) S4 Mix and Bottom 

(Base) S3 Mix 

6.4 Prep-ME Software Implementation 

In the Prep-ME software, two features have been developed to integrate material 

data sets in the database. Firstly, the extensive ODOT resilient modulus database for the 

natural subgrade after manual quality checks are populated into the Prep-ME database, 

and software interface is customized for the data sets, as shown in Fig. 6.6. The Prep-

ME software can retrieve resilient modulus data of natural subgrade soils based on site 

name, soil series, and soil classification (either USCS or AASHTO method). It is noted 

that the data for stabilized soils and base aggregates are not implemented in the Prep-

ME since the numbers of available samples are very limited. 

Secondly, the currently available dynamic modulus testing data in Oklahoma are 

populated into the Prep-ME database. The Prep-ME software can retrieve dynamic 

modulus data based on binder grade, air void level, mix type, and refinery (Fig. 6.7). Users 

can not only view the retrieved testing data for dynamic modulus, asphalt binder 

properties, and mix design, but also export the data for directly importing into the 

Pavement ME Design software. 
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Fig. 6.6  Retrieving Oklahoma Soil Resilient Modulus Data 
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Fig. 6.7  Retrieving Oklahoma Dynamic Modulus (E*) Data 
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7. CONCLUSIONS 

 

The Mechanistic Empirical Pavement Design Guide (MEPDG), later named as 

DARWin-ME and Pavement ME Design, proposes a more rational approach to 

characterizing traffic loading spectrum and material properties. The objective of this 

research is to develop WIM QC metrics and associated software interfaces that ODOT 

can use to assess and improve WIM data quality, and generate site-specific (Level 1), 

region-specific (Level 2), and statewide average (Level 3) traffic inputs that are required 

for the Pavement ME Design in Oklahoma. 

Five years of WIM data (2008 to 2012) and three years of AVC data (2013-2016) 

are acquired from ODOT, which are converted into the TMG data format and exported 

into the Prep-ME SQL database. Statewide WIM data check is performed by utilizing the 

Prep-ME software to examine the traffic data quality for each station by year, by direction 

and by lane via various data check operations, such as automated check, manually 

accept/reject, replacing, daily sampling. The data passed the semi-automated data 

checks with the aid of Prep-ME software are then utilized for the generation of three 

Levels of traffic inputs for Pavement ME Design. For Level 1 input, site-specific traffic 

data “By Direction” or “By Station” can be prepared in Prep-ME. Level 2 input level is 

developed in Prep-ME based on four clustering parameters: the rural or urban 

classification, function class of highway, average daily truck traffic volume (AADT) and 

ratio of single unit and multiple unit trucks (SU/MU). In addition, the TTC approach, 

simplified TTC approach, and "Flexible Clustering" method are maintained in Prep-ME for 

Oklahoma users for design of low volume roads, or to apply local engineering judgment 

and select WIM sites with similar traffic patterns for traffic data preparation for Pavement 

ME Design. For Level 3 input, three methods are provided in Prep-ME: State Average, 

LTPP-5(004) and Pavement ME Default. 

Secondly, available material data in Oklahoma are investigated and integrated in 

the Prep-ME software to generate Level 1 and Level 2 material inputs for DARWin-ME. 

In particular, extensive amount of resilient modulus data for unbound natural subgrade 

soils with over 10,000 records have been manually checked for data quality. In addition, 
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the AASTO T315 Superpave binder testing data of three types of asphalt binders typically 

used in Oklahoma: PG 64-22, PG 70-28, and PG 76-28 from three different refineries 

(NuStar from Catoosa, Valero from Ardmore, and Asphalt Terminal and Transportation 

(ATT) from Muskogee), and the dynamic modulus values for Oklahoma S3 and S4 mixes 

measured in accordance with AASHTO TP62 are populated into the Prep-ME database. 

Two software features have been developed in Prep-ME to retrieve (1) resilient modulus 

data of natural subgrade soils based on site name, soil series, and soil classification 

(either USCS or AASHTO method), and (2) dynamic modulus data based on binder 

grade, air void level, mix type, and refinery for directly importing into the Pavement ME 

Design software. 

The default inputs provided in DARWin-ME were developed based on national-

level data and may not work for a particular state or a site. Therefore, development of 

traffic and material inputs are helpful in the design and in predicting pavement 

performance accurately. This project is expecting not only to benefit state traffic data 

collection engineers in conducting an effective QC check on traffic data collected, but also 

to help state pavement design engineers to analyze and prepare traffic loading data 

collected through WIM for Pavement ME design. The productivities of the above 

operations can be improved tremendously. 
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LIST OF DELIVERABLES 

 

Besides this final report, the following items are delivered as the appendices of this 

project: 

• Appendix A Prep-ME Installation Guideline. 

• Appendix B Prep-ME Software User Manual (customized for this project 

with new developed modules); 

• Appendix C Statewide WIM Data Check Results; 
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