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Executive Summary 

Travel time (TT) is a basic measure of traffic operation quality and level of service. 
This metric is considered a component of travel speed, thus an extremely valuable 
piece of information for travelers, shippers, and Traffic Management Center (TMC) 
personnel. TMC in particular use TT for traffic prediction and analyses, as its accuracy 
and reliability aids in reducing congestion, improving safety, and enhancing traffic flow 
(e.g., commuters avoiding congested roads; transportation agencies improving traffic 
management). 

Measuring TT requires speed estimation, often including vehicle identification. 
Transportation agencies have leveraged a number of technologies for estimating TT 
(e.g., Bluetooth Wi-Fi identification detection, toll tag/automatic license plate reader, in-
pavement magnetic detector, machine vision, radar equipment, inductive loop, 
crowdsourcing, and cell phone signal monitoring). A detailed description of these 
technologies and best practices for TT implementation and data collection can be found 
in [1] and [2]. A comprehensive, side-by-side study to evaluate various TT estimation 
technologies was reported in [3]. Each technology was characterized by advantages 
and disadvantages (e.g., accuracy, coverage, cost, portability, and other factors) for 
TMC to consider when designing a program for evaluating and/or improving TT 
reliability. Multi-sensor technologies proved the most efficient overall [3]. 

The PI and his research team developed, and then field tested, an inexpensive 
Bluetooth monitoring station for obtaining accurate, real-time TT measurements. This 
report details 1) system architecture information; 2) technical details for 
hardware/software, along with a discussion about algorithms used for estimating TT; 
and 3) results gathered during field testing and system evaluation.  

The research group also developed a Bayesian model to detect infrequent, non-
recurrent congestion at disjointed locations. Causes for these types of road conditions 
are plentiful, and identifying the source of each in a timely manner remains an open 
research problem. Understanding non-recurrent congestion is vital for alleviating its 
negative effects on traffic flow. Furthermore, gaining insight on such impacts aids 
motorists and TMC personnel in determining adequate trip planning time, estimating 
buffer time, and allocating resources for enhancing TT and improving traffic 
performance in an efficient, holistic manner. Sections below detail a Bayesian engine for 
identifying non-recurrent congestion using historic traffic speed (i.e., TT) probe data 
measurements obtained from the Department of Transportation Federal Highway 
Administration (FHWA) National Performance Management Research Dataset 
(NPMRDS). Likelihood models of several non-recurrent congestion sources are 
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estimated, and results demonstrating the approach employed are shown for highway I-
35 across the state of Oklahoma. The proposed solution can promptly respond to 
changes in traffic patterns, proving that accurate TT (or “speed data”) can be obtained 
in real-time. Developed model suitability is described in this report.  
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1. INTRODUCTION

1.1 Introduction 

Speed, TT, and delay are related measures commonly used as performance 
metrics for traffic services. Combined, these metrics answer an important question 
posed by travelers and shippers, “How long does it take to get from point A (origin) to 
point B (destination)?”  Motorists expect to complete their planned trip in a minimal 
amount of time, while taking safety into consideration. Travel performance is often 
described in terms of the ability to achieve the expected TT objective on a regular basis. 
For example, the Highway Capacity Manual [4] states that average travel speed is used 
as a measure of effectiveness for assessing the quality of traffic operations on arterials 
and two-lane rural highways. Control delay is the measure of effectiveness for signal- 
and stop-controlled street intersections, whereas level of service on basic, weaving, 
merge, and diverge freeway segments is directly related to density as a primary 
measure of effectiveness. Speed is an important component for evaluating freeway 
corridor and system operations. 

Speed is defined as the rate of motion in distance per unit time. TT is the amount 
of time elapsed for a vehicle to traverse a defined section of roadway. Speed and TT 
are inversely related, as shown in the following formula: 

𝑺𝑺 = 𝒅𝒅
𝒕𝒕

  Eq. 1-1 

where: 

S = speed, mile/hour or feet/second 

D = distance traversed, mile or feet 

T  = time to traverse distance d, measured in hours or seconds. 

In a moving traffic stream, vehicles are likely to travel at various speeds, 
representing a frequency distribution. However, taken as a whole, the traffic stream can 
be characterized according to an average speed. Two methods can be used to 
determine average speed for a traffic stream: 

• Time Mean Speed (TMS). This metric represents average speed of all vehicles
passing a point on a highway or a lane with regard to a specified time period, making it 
a point measure of average speed. TMS is the simple average of a representative 
sample of vehicle speeds.  
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• Space Mean Speed (SMS). This metric represents average speed of all vehicles
occupying a given section of a highway or a lane with regard to a specified time period, 
making it a space measure of average speed over a length. SMS is calculated by 
determining average TT for a vehicle to traverse the specified section, using average TT 
to compute speed. 

As previously mentioned, speed is inversely related to TT. Reasons for and 
locations at which speeds (or TT) are measured can be, however, quite different. Speed 
measurements are typically recorded at a point (or on a short segment) of roadway 
under free-flow conditions (i.e., volumes less than 750 to 1,000 veh/h/ln on freeways or 
500 veh/h/ln on other types of uninterrupted roadway flow). The aim is determining 
speeds at which drivers typically travel in the absence of congestion. This information 
can then be used to determine general speed trends, to set reasonable speed limits, 
and to assess safety. Such studies are referred to as "spot speed studies," because the 
focus is on a designated "spot" or location on a roadway. 

TT must be measured over a distance. Although spot speeds can be measured in 
terms of TT over a short measured distance (generally less than 1,000 ft), most TT 
measurements are calculated using a significant length of roadway. Such studies are 
generally performed while the roadway is congested, specifically to measure or quantify 
the extent and/or cause(s) for the congestion. Information about TT between key points 
within a study area is used for many purposes, including the following: 

• To identify problem locations on roadways by virtue of recurring lengthy TTs
and/or delays. 

• To determine arterial level of service based on average travel speeds and TTs.

• To provide necessary input for traffic assignment models utilizing link TT as a key
determinant for route selection. 

• To provide TT data for economic evaluation of transportation improvements.

• To develop time contour maps and other depictions of traffic congestion in a
specified area or region. 

• To compute measures of TT reliability.

The term TT delay describes the difference between actual TT to traverse a
section of highway versus a traveler’s expected or desired TT. Hence, travel delay is a 
component of total TT that travelers find particularly annoying. For example, a delay due 
to interrupted-flow on an arterial roadway might include stopped travel due to signals, 
midblock obstructions, or other causes. Hence, TT delay is more of a philosophical 
construct because there are no agreed-upon methodologies for determining a traveler’s 
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expected TT for a given section of a roadway. TT delay is seldom used for assessing 
congestion along a specified segment. 

Because speed is generally studied at specified points under free-flow roadway 
conditions and TT/TT delay are generally studied along sections of a roadway under 
congested conditions, techniques for studying each are quite different.  

1.2 Field Measurement Techniques 

Measuring TT has traditionally relied on monitoring instrumented probe vehicles 
traveling through a roadway section under study while an observer records elapsed 
times through the specified section, as well as at intermediate points within the section. 
To maintain result consistency, probe-vehicle drivers are instructed to use one of three 
techniques: 1) floating car; 2) maximum car; or 3) average car. A similar technique uses 
a GPS device to record vehicle trajectory along with time stamps. This method provides 
more frequent sampling along the route. However, both methods provide TT for only the 
probe vehicle, making it difficult to collect a large dataset for various routes and times of 
day. 

Another traditional technique for collecting TT involves roadside observers and/or 
cameras for recording license plate numbers as vehicles pass designated points along 
a roadway. Time of passage is noted, along with the license plate number. Because it is 
virtually impossible to record every license plate align with an associated time of 
detection, sampling is difficult. For example, if a sample of 50% of all passing license 
plates is recorded at each study location, the probability that a license plate will be 
matched at two locations is 0.50 X 0.50, or 0.25 (or 25%). The probability that a license 
plate will be matched at three locations is 0.50 X 0.50 X 0.50 (or 12.5%). These 
sampling problems have been addressed by advances in license plate scanning 
technology that facilitates a high degree of identification accuracy for vehicles passing 
at designated points. Notably, the detail of delay information at intermediate points 
cannot be determined using this type of technology. 

Automated Vehicle Identification (AVI) systems composed of an in-vehicle 
transponder and a roadside unit that receives the transponder signal have also been 
used to measure TT. This method is often integrated with a tolling infrastructure (e.g., 
PikePass /E-ZPass tag readers located overhead along tollways). Personal 
identification information is scrambled within the PikePass /E-ZPass controller prior to 
its use in TT calculations. This technique is limited PikePass /EZPass-equipped 
vehicles travelling on toll roads. 

In recent years, Bluetooth and Wi-Fi signals have been used for measuring TT at a 
cost lower than traditional techniques mentioned above. Bluetooth is an open wireless 
technology standard for exchanging data from fixed and mobile devices over short 
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distances, creating personal area networks (PANs) with high levels of security. 
Bluetooth uses a radio technology (i.e., frequency-hopping spread spectrum) operating 
in the 2.4 GHz short-range radio frequency band. Many vehicle dashboard systems, cell 
phones, headsets, and other personal equipment are, or can be, Bluetooth-enabled to 
streamline the flow of information between devices. Interconnectedness between 
Bluetooth devices is achieved through transmission and acceptance of a 48-bit Media 
Access Control (or MAC) address between inquiring and receiving devices via a small 
transceiver that continuously transmits its device-specific MAC address in an effort to 
find other devices with which to communicate.   

Once two Bluetooth devices are connected, transmission of the MAC address 
continues as long as the devices remain within range. Manufacturers typically assign 
unique MAC addresses to Bluetooth-equipped devices so that they cannot be tracked 
nor are the addresses readily available when a device is sold within the marketplace, 
making the device a personal, information-free identifier. Although the constant 
broadcast of MAC addresses is detectable and measurable, there is no relationship to 
personal or otherwise sensitive information, keeping the traveling public and their 
information anonymous. 

Bluetooth readers mounted on the roadside at key locations can detect 
anonymous Bluetooth signals broadcast from mobile devices within vehicles passing 
along a roadway. Signal time stamps, along with the MAC address of the Bluetooth 
device, are used to determine TT and to accurately measure speed. The range of the 
reader is about 175 feet, which is sufficient to cover one direction of a multi-lane 
highway. 

 

Figure 1-1 BlueTOAD Installation.  
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Data obtained by Bluetooth readers are transmitted via either the ethernet or 3G to 
a cloud-based host. Hard wiring is kept to a minimum, making temporary Bluetooth 
and/or Wi-Fi based TT measurement systems cost-effective. These can be used, for 
instance, to monitor traffic flows in work zones or to determine optimal timing and 
sequencing for traffic lights. The only requirements are an appropriate mounting point, a 
cellular data connection, and a 5W electrical supply. Alternatively, the system could be 
powered by a solar panel/battery combination for use in remote or temporary locations, 
such as an approach zone to roadwork. Units could also be plugged into an existing 
electrical and/or fiber infrastructure and utilize Power over Ethernet (PoE) technology. 
Unlike image-based TT detection (e.g., license plate recognition cameras), 
Bluetooth/Wi-Fi-based systems are unaffected by snow, ice, smoke, fog, or heavy rain. 

Link TT is calculated when the MAC address matches a prescribed link origin and 
destination. SMS is then calculated based on TT along a given link. Abnormal data 
points (i.e., outliers) are removed using statistical filters and include illogical data pairs 
and any other matched pair that is outside the normally expected TT. This processing 
also filters out high speed outliers based on rarely found identical MAC addresses or 
multiple simultaneous MAC addresses from within a single vehicle, such as a bus.  Data 
can be viewed in real-time or analyzed historically through a Web interface, which 
provides TT, speed, and MAC address detection counts.   

BlueTOAD (or Bluetooth Travel-time Origination And Destination) is a currently 
available commercial product manufactured by TrafficCast for reading Bluetooth 
signals. Companion BlueARGUS software is used to compute TT, speed, and other 
performance metrics every 15-minutes.  

Figure 1-1 illustrates a BlueTOAD installation. 

1.3 Travel Time Reliability 

Drivers become accustomed to everyday congestion and plan for it, leaving home 
early enough to get to work on time. Unexpected congestion, however, is a source of 
angst for travelers. For example, when a trip that typically takes 20 minutes takes an 
hour—with little or no warning, a motorist’s day is significantly affected. He or she might 
be late for work, miss an appointment with a doctor, or pay a penalty for picking up kids 
late from childcare. A truck driver delayed by traffic congestion might deliver a late 
shipment to the manufacturer, disrupting just-in-time delivery and causing the shipping 
company to lose its competitive edge.   

Travelers desire travel time reliability [TTR] (i.e., a consistency or dependability in 
travel time as measured from day to day or across different times of day. Motorists want 
predictability that a trip will take a half-hour today, a half-hour tomorrow, and a half-hour 
for the foreseeable future. Consistent TT has safety implications, as well, since 
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predictability in known to reduce risky driving behavior [5].  Thus, TTR not only improves 
motorists’ experiences, but also has a positive impact on traffic safety. 

Another view of TTR is based on probability of failure, which can be leveraged to 
characterize manufacturing and industrial processes. In this case, failure is defined in 
terms of TT relative to the number of times a given threshold is not achieved or 
exceeded. Some non-U.S. TTR research has defined the probability of failure in terms 
of traffic flow breakdown. A related concept, vulnerability, is a measure of transportation 
network imperviousness to breakdown conditions. Published literature includes several 
definitions of TTR, depending on the context in which the term is being used (See Table 
1-1). 

Table 1-1 Definitions of Travel Time Reliability  

Reference TRR Definition 

Lida [6] The probability of making trips on time.    

Sisiopiku and Islam [7] The degree of consistency of a particular mode, 
corridor, or route over a time period. 

Elefteriadou and Cui [8] The level of variability between the expected travel time 
(based on scheduled or average travel time) and the 
actual travel time experienced.  Note that for facilities 
that are congested during most of the time, the 
expected travel time would be high and the difference 
between the two values (expected –actual travel time) 
would be small, labeling the facility as “reliable”, when it 
is consistently congested. 

Texas Transportation 
Institute [9] 

Travel time reliability and variability are defined 
separately. Reliability is commonly used in reference to 
the level of consistency in transportation service; 
variability is the amount of inconsistency on operating 
conditions. To quantify the reliability the report 
recommends the Buffer Time, which is the amount of 
extra time that must be allowed for the traveler to 
achieve their destination in a high percentage of the 
trips. To quantify the variability, the report recommends 
the average travel time plus one or two standard 
deviations. 
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NCHRP Report 398 [10] The impact of non-recurrent congestion on the 
transportation system. 

NCHRP Report 399 [11] A measure of the variability of travel time; it is stated 
that reliability could be presented as the standard 
deviation of travel time. 

AASHTO’s Freight Report 
[12] 

The percent of on-time performance for a given time 
schedule. 

TranSystems [13] The probability of travel times meeting users’ 
expectations. Reliability is the probability that a product 
or service performs adequately over the interval [0, t]. 

SHRP-2, Report S2-L03-
RR-1 [14] 

 

How travel times vary over time (e.g., hour-to-hour, day-
to-day).  The terms travel time variability and travel time 
reliability are used interchangeably.  

1.4 Travel Time Reliability and Congestion 

Traffic congestion results when traffic flow rate (i.e., demand) approaches or 
exceeds roadway capacity (i.e., supply). Figure 1-2 presents a conceptual model of the 
way in which seven sources of congestion interact and result in total congestion [14]. 
Reliability is an aspect of total congestion that is greatly influenced by such complex 
interactions of traffic demand, physical capacity, and roadway events. Although higher 
congestion generally leads to higher unreliability in TT, there may be instances when 
even though roadway congestion causes increased TT, the upsurge can be predicted 
with a high degree of certainty. Results of the SHRP-2 Reliability Project L03 [14] 
indicate that strategies and remedies that mitigate congestion should be helpful in 
reducing TT variability.   
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Figure 1-2 Congestion and Its Sources [14]. 

Following is a brief summary of seven sources of congestion [14]. 

1. Physical bottlenecks (42%) - Bottlenecks occur upstream of roadway 
segments with reduced capacity (e.g., lane drops, crash sites) or those 
affected by significant traffic movements (merging or weaving sections). 

2. Traffic incidents (39%) - Traffic incidents (e.g., vehicular crashes, 
breakdowns, debris in travel lanes) disrupt normal flow of traffic, typically 
due to physically reducing the number of travel lanes.  

3. Weather (18%) - Environmental conditions (e.g., fog, snow, and heavy 
rain) influence driver behavior that can negatively affect travel 
conditions/flow.  

4. Work zones (1%) - Construction activities on the roadway, resulting in 
physical changes to the highway environment (e.g., reduction in the 
number/width of travel lanes; lane shift diversion, reduction or elimination 
of shoulder, and temporary roadway closure). 

5. Traffic-control devices (not measured) - Intermittent interruptions of 
traffic flow by control devices (e.g., railroad grade crossing and poorly 
timed signal). 

6. Fluctuations in normal traffic demand (not measured) – Daily, hourly, 
and sub-hourly variations in traffic demand causing flow rate exceeding 
capacity. 
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7. Special events (not measured) - Special event traffic fluctuations 
whereby flow in the vicinity of the event is significantly different from 
typical patterns (e.g., surges exceed capacity). 

Figure 1-3 illustrates TT variation on the I-5 Freeway in San Diego, California, by 
time of day throughout a given year, excluding non-recurrent events, such as incidents, 
weather, unusual demand, and special events. Time of day is shown on the x-axis, and 
TT in minutes is shown on the y-axis. Clearly, this roadway segment is unreliable 
notwithstanding the influence of incidents and weather. Not only is there a variance in 
TT, but also in range of time (e.g., slightly during morning peak, and more pronounced 
during evening peak). Around midnight, minimum and maximum TT vary only 5 minutes 
(e.g., 55 versus 50 minutes); during weekday evening peak, TT varies 50 minutes 
notwithstanding additional influence of nonrecurring events (e.g., 100 versus 50 
minutes).  

Figure 1-4 shows TT without including non-recurrent events. Clearly, nonrecurring 
events have an impact, exemplified by a widening spread between minimum and 
maximum TT. Adverse weather serves as an example of the effect a non-recurrent 
event, especially during peak period travel. Traffic incidents also have an effect on TT 
reliability, as do special events and unusually high traffic demand.  

National estimates of congestion by source are shown in Figure 1-5. FHWA 
estimates are based on consensus rather than analysis and are meant to be a snapshot 
rather than indicative of individual corridors or highways.  For example, in rural 
conditions, delays are nearly always a function of events rather than a bottleneck.  In 
urban conditions, especially roadways with predominant bottlenecks, most delays are 
determined by insufficient base capacity. 
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Figure 1-3 Variation in Travel Times by Time of Day Across a Year, Excluding 
Non-recurring Congestion [14]. 

 

Figure 1-4 Variation in Travel Times by Time of Day Across a Year, Including Non-
recurring Congestion [14]. 
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Figure 1-5 FHWA National Estimates of Congestion and Delay by Source [15]. 

1.5 Legislative and Regulatory Requirements 

The Moving Ahead for Progress in the 21st Century (MAP-21) Act (Pub. L. 112-
141) and the Fixing America's Surface Transportation (FAST) ACT (Pub. L. No. 114-94) 
established new requirements for performance management to ensure the most 
efficient investment of Federal transportation funds. Performance management 
increases accountability and transparency of Federal-aided highway programs and 
provides a framework for supporting improved investment decision-making through a 
focus on performance outcomes for key national transportation goals. Federal-aid 
highway fund recipients are mandated to make investments for achieving performance 
targets and advancing progress toward the following national goals: 

• Safety: To achieve a significant reduction in traffic fatalities and serious injuries 
on all public roads. 

• Infrastructure condition: To maintain the highway infrastructure asset system in 
a state of good repair. 

• Congestion reduction: To achieve a significant reduction in congestion on the 
National Highway System (NHS). 

• System reliability: To improve the efficiency of the surface transportation 
system. 

• Freight movement and economic vitality: To improve the national freight 
network, strengthen the ability of rural communities to access national and international 
trade markets, and support regional economic development. 
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• Environmental sustainability: To enhance the performance of the 
transportation system while protecting and enhancing the natural environment. 

• Reduced project delivery delays: To reduce project costs, promote jobs and 
the economy, and expedite the movement of people and goods by accelerating project 
completion through eliminating delays in the project development and delivery process, 
including reducing regulatory burdens and improving agencies' work practices. 

On January 18, 2017, the FHWA published final rules for the last two national 
performance management measures in the Federal Register. One rule established 
regulations for assessing the condition and performance of bridges and of pavements 
on the Interstate and non-Interstate NHS. The other established regulations to assess 
the performance of the NHS, Freight Movement on the Interstate System, and the 
Congestion Mitigation and Air Quality Improvement (CMAQ) Program. 

These National Performance Management Measures—Assessing Performance of 
the National Highway System, Freight Movement on the Interstate System, and 
Congestion Mitigation and Air Quality Improvement Program—mandate that states 
evaluate and report transportation system performance “more effectively and 
consistently,” including TTR, excessive delay during peak hours, freight movement 
reliability and greenhouse gas and vehicle emissions by: 

• Establishing a real-time system management information program,  

• Monitoring traffic & travel conditions on major highways, and  

• Sharing information to address congestion problems and facilitate traveler 
notifications.  

Prior to MAP-21, there were no explicit requirements for state DOTs to 
demonstrate how their transportation programs supported national performance 
outcomes: measure condition or performance, establish targets and assess progress 
toward targets, or report on condition or performance in a nationally consistent manner 
that enabled FHWA to assess the entire system. Without such information, it is difficult 
for FHWA to examine the effectiveness of the Federal-aid highway program as a means 
to address surface transportation performance at a national level. MAP-21 regulatory 
rules: 

• Propose requirements for establishing targets that can be aggregated at the 
national level, 

• Recommend consistent reporting on roadway condition and performance, and 

• Suggest a process for determining significant progress for state DOTs. 
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These new performance metrics will improve information available to state DOTs 
and help focus planning and programming decisions. Overall, the metrics are aimed at 
strategically targeting investment decisions and evaluating their impact. Regulations 
empower FHWA to better communicate a national performance story and more reliably 
assess impacts of Federal funding. 

1.6 Travel Time Reliability Metrics 

Like the wide range of definitions for TTR, there are a broad variety of techniques 
available for measuring reliability. Effective measures must capture commuters’ 
experiences and should communicate information about the size and shape of the 
underlying TT distribution (i.e., TT history on roadways, corridors, or networks). 

Figure 1-6 illustrates that travelers tend to recall worst-case scenario days spent in 
traffic rather than the average TT of their travels throughout the year [16].  One 
argument against using average TT to assess TTR is reported in Figure 1-7, which 
depicts results of a before-and-after study of incident management program benefits.  
Although average TT improvements might seem modest, TTR measured on the worst 
few days improved dramatically [16]. In fact, travelers arrived at their destinations on 
time more often or with fewer significant delays. 

Four types of TTR measures have been proposed in the literature: 1) statistical 
measures of TT variability; 2) 80th, 90th; or 95th percentile TT; 3) TT buffer measures; 
and 4) tardy trip indicators [17].  Each is discussed in the following sections. Table 1-2 
presents a summary of reliability metrics that are appropriate for general practice [14].  
Some are shown in more detail in Figure 1-8 and Figure 1-9. 

Statistical measures of TT variability. Percentage of variation serves as a 
statistical measure for quantifying TTR: 

 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝒐𝒐𝒐𝒐 𝑽𝑽𝑽𝑽𝑷𝑷𝑽𝑽𝑽𝑽𝒕𝒕𝑽𝑽𝒐𝒐𝑷𝑷 =  𝑺𝑺𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻
𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙      Eq.  1-2 

where: 

𝑆𝑆𝑇𝑇𝑇𝑇= standard deviation of TT, minutes 

𝑇𝑇𝑇𝑇  = average TT, minutes 

Although percentage of variation is easy to calculate and simple to interpret, it 
should be noted that early and late arrivals are considered equal in weight. This 
phenomenon serves as a significant drawback, primarily because travelers and 
shippers are primarily concerned with information regarding late arrivals. 
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Figure 1-6 Average Travel Times Doesn’t Tell the Full Story [16]. 

Figure 1-7 Travel Time Reliability Measures Demonstrate Traffic Management 
Benefits [16]. 
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Table 1-2 Common Travel Time Reliability Metrics. 

Reliability 
Performance Metric 

Definition Units 

Buffer Index Difference between 95th percentile travel 
time index (TTI) and average TTI, 
normalized by average TTI; 

Difference between 95th percentile TTI and 
median TTI, normalized by median TTI 

% 

Failure and on-time 
measures 

Percentage of trips with TT <1.1 median TT
(MTT) and <1.25 MTT; 
 

Percentage of trips with space mean 
speed less than 50-, 45-, and 30 mph 

% 

Planning Time 
Index 95th percentile TTI None 

80th percentile TTI Self-explanatory None 

Skew statistic (90th percentile TTI - median)/(median - 10th 
percentile TTI) None 

Misery Index 
(modified) 

Average of the highest 5% of TT / free-flow 
TT None 
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Figure 1-8 Travel Time Distribution is the Basis for Defining Reliability Metrics 
[18]. 

Figure 1-9 Cumulative Travel Time Distribution and Travel Time Indices [18]. 

90th or 95th percentile TT (i.e., planning time). The 90th or 95th percentile TT 
method is considered the easiest for measuring TTP of a given road network. The first 
and second worst TT recorded over the period of a month are used to mark the 95th or 
90th percentile TT, respectively. Worst case scenarios are typically the result of non-
recurring congestion (i.e., traffic crashes, inclement weather, construction work, and 
special events).  Hence, if travelers know the 90th or 95th percentile TT of a route, they 
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can plan accordingly and reach their destinations on time. Notably, this measure is 
reported in minutes and is used in computing reliability indices, such as the buffer index. 

Buffer time and buffer time index. Buffer time (BT) is the extra time travelers 
must add to their TT to arrive at their destination on time:   

      𝑩𝑩𝑻𝑻 =  𝑻𝑻𝑻𝑻𝟗𝟗𝟗𝟗 − 𝑻𝑻𝑻𝑻                                              Eq.  1-3 

where: 

BT = buffer time, minutes  

𝑇𝑇𝑇𝑇95 = 95th percentile TT, minutes  

𝑇𝑇𝑇𝑇  = Average TT, minutes 

Buffer Time Index (BTI) is defined by the following equation: 

                                                        𝑩𝑩𝑻𝑻𝑩𝑩 =  𝑻𝑻𝑻𝑻𝟗𝟗𝟗𝟗− 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻

                                               Eq.  1-4 

For example, a buffer time index of 40% indicates that a trip with 20-minute 
average TT requires a traveler to leave 8 minutes early to ensure on-time arrival:  

Average TT: 20 minutes 

BTI:  40 percent 

BT: 20 minutes × 0.40 = 8 minutes 

Given this information, the traveler should allow 28 minutes total TT to ensure on-
time arrival 95 percent of the time. 

SHRP-2 Project S2-L03 suggests that BTI is too erratic and unstable to be 
considered for the primary reliability metric for tracking performance trends or for 
studying the effects of improvements [14].  However, as a secondary metric, BTI 
provides useful information, meaning that rather than being disregarded, BTI should be 
included in a suite of reliability performance metrics [14].   

Planning time index. The planning time index (PTI) represents TT a traveler 
should allow to ensure on-time arrival. PTI is the ratio of 95th percentile TT to free-flow 
TT. While BT represents the additional time necessary to consider for on time arrival, 
PTI indicates TT and represents the 95% percentile TT.  For example, a PTI of 1.60 
indicates that a trip with 15-minute TT in light traffic requires a traveler to allow 24 
minutes TT to ensure on-time arrival 95 percent of the time. 

Free-flow TT  = 15 minutes 

PTI = 1.60 
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PT = 15 minutes × 1.60 = 24 minutes 

PTI can be directly compared to TT index (TTI), which is a measure of congestion 
(i.e., average additional TT during congestion compared with TT during light traffic). TTI 
is the ratio of average TT during peak-periods to free-flow TT. Figure 1-10 illustrates the 
relationship between TTI, PTI, and BT.  

Misery index. The misery index focuses on trips with later than expected arrival 
times (i.e., “How bad are the worst days” [19] for 20% of trips). The misery index 
compares average TT of late-arrival trips against average TT during normal conditions 
in an effort to measure negative aspects of trip unreliability: 

                𝑩𝑩𝑻𝑻𝑩𝑩 =   𝑻𝑻𝑻𝑻𝟖𝟖𝒙𝒙− 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻

                                           Eq.  1-5  

where: 

𝑇𝑇𝑇𝑇80 = Average TT for the longest 20% of trips, minutes 

𝑇𝑇𝑇𝑇 = Average TT for all trips, minutes 

 

 

Figure 1-10 Relationship of Travel Time Index, Planning Time Index and Buffer 
Time [7]. 
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Performance measures discussed earlier provide different perspectives and 
additional insights when used with multiple time periods. For example, the 95th 
percentile TT can be computed for an entire peak period or for each specific hour within 
a specified peak period. Comparing the way in which these measures change over the 
course of a day illustrates how reliability fluctuates during the day. Tracking changes in 
measures according to time of day can be used to assess the benefits that travel 
demand management programs are likely to produce in terms of travel reliability 
improvements and also when incident-response resources are most needed. 

1.7 Travel Time Reliability Monitoring System (TTRMS) 

Figure 1-11 illustrates the seven steps involved in establishing a travel time 
reliability monitoring system (TTRMS) and how to put TTR information to work for 
travelers and traffic managers [20].    

 

Figure 1-11 Information Flow in Travel Time Reliability Monitoring System [20]. 

Following is a brief discussion of each step: 

1. Collect and Manage Traffic Data 
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The first step in developing TTRMS is acquiring/storing traffic data collected from 
infrastructure-based sources and vehicle-based sources. Data should be both mode 
neutral (e.g., freeway lane data) and mode specific (e.g., transit data).  

Infrastructure-based sources include loop detectors, video image processors, 
wireless magnetometer detectors, and radar detectors. These technologies are able to 
collect single-point vehicle count and lane occupancy data, as well as double-point 
speed data. Collected data is anonymous (i.e., specific vehicle cannot be identified).  

Vehicle-based detectors collect data about a vehicle when it passes either a fixed 
point, as is the case for an automated vehicle identification (AVI) system, or as it travels 
along a path for automated vehicle location (AVL). AVI data collection sources include 
Bluetooth readers, electronic toll tag readers, and license plate readers, detecting 
vehicles passing sensor locations. Data are post-processed for matching information 
from a vehicle as it passes successive sensors. Doing so allows direct computation of 
TT between two points. AVL data collection sources identify GPS traceable paths for 
individual vehicles as they travel through a roadway system.  

2. Measure Travel Times 

The second step in developing TTRMS is measuring TT at the route level. This 
process involves imputing missing data, computing segment TT, and then computing 
route TT. These are described in detail below. 

Impute missing values. Sensor coverage can often be incomplete due to gaps in 
system coverage or because of an individual sensor malfunction. Missing data present 
a major challenge for producing useful TTR performance measures. SHRP-2 Program 
Report S2-L02-RR-2 presents statistical techniques for identifying malfunctioning 
detectors, discarding poor data, and filling in missing data with imputed values. The 
report also presents methods for collecting, filtering, and imputating AVI and AVL data. 

Compute segment TT. For infrastructure-based detectors, segment TT estimates 
are based on average speeds of vehicles traversing the segment. For double-loop 
detectors, speeds are measured directly. However, for single-loop detectors, speeds 
are estimated using tools like a g-factor, which combines an assumed vehicle length 
with the flow and occupancy data gathered by single-loop detector [20].   

Unlike infrastructure-based detectors, vehicle-based detectors (e.g., AVI and AVL) 
generate direct measurements of individual vehicle TT from one location to another, 
requiring detector data to match network data.   

Compute route TT. Although estimating average route TT from infrastructure-
based data is straight forward, determining route TT distributions from infrastructure-
based sensors is difficult.  Limited information about specific vehicles is available on the 
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network. SHRP-2 Program Report S2-L02-RR-2 presents two methods for constructing 
route TT from infrastructure-based sensors: 1) Monte Carlo simulation with link 
incidence matrices, and 2) Monte Carlo simulation with a prediction technique using 
probe vehicles and point queue estimations [20]. 

Constructing route TT distributions from vehicle-based data can be done directly if 
ample data are available. Given the absence of sufficient data, techniques described for 
infrastructure-based sensors can be employed.  

3. Characterize Observed Travel Times  

Figure 11 illustrates that characterization involves labeling each TT observation 
based on operating conditions when TT was observed. For example, TT might have 
been observed late at night under light traffic conditions free from a non-recurring event, 
or it might have observed during a heavily congested afternoon peak immediately 
following an incident. The objective of characterization is assigning TT observations into 
bins composed of similar operating conditions. 

4. Collect, Manage, and Impute Non-recurring Event Data 

Non-recurring event data come in a variety of forms, as previously mentioned. 
Some TTRM systems integrate non-recurring event data into a single database (e.g., 
Georgia DOT Navigator system). In others, multiple data sources are post¬-processed 
for integrating various non-recurring event sources into a single database (e.g., San 
Diego’s performance measurement system [PeMS]). PeMS integrates incident data 
from three sources: 1) the statewide Traffic Accident and Surveillance Analysis System, 
2) lane closure data from Caltrans, and 3) weather data from the Automated Weather 
Observing System reported for the San Diego International Airport.  

Integrating non-recurring event data can be challenging and often involves 
separate analysis for properly integrating and assigning event data to correct time 
periods. For example, assigning incident data to time periods is not straightforward, as 
the impact of an incident on traffic might extend well beyond the time period during 
which the incident occurs. Weather data presents similar challenges.  In some cases, 
imputing non-recurring event data is required for developing consistent event reporting 
across time periods under analysis. A common example includes achieving consistency 
in the way in which incidents are recorded.  

5. Identify Sources of Congestion and Unreliability 

Once route TT calculations or distributions have been assembled, data can be 
analyzed in conjunction with non-recurring event data to identify sources of unreliability. 
SHRP-2 Program Report S2-L02-RR-2 presents two methods of congestion source 
identification: 1) tagging and 2) statistical [14]. 
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A tagging approach matches non-recurring event data with TT data during the data 
collection process. Non-recurrent event data are captured in real time and can be 
archived into databases tailored to each event type. This information can then be 
matched to TT data for analysis and categorization purposes. Recurring congestion 
levels are identified and tagged to TT observations by time of day, allowing each 
observation to be tagged with a flow regime.  

A statistical approach identifies congestion sources in two steps. First, unusual TT 
requiring explanation are identified. Second, evidence of nonrecurring events likely to 
have caused unusual TT is sought after. Information is collected for each event with an 
unusual TT value. Notably it is possible for causal events to be overlooked, however, as 
these cause no significant impact. 

6. Understand the Impact of the Sources of Unreliability  

As discussed earlier, various metrics can be used to quantify source impact of 
unreliability based on distributions developed in Step-5 for specific facilities or routes. 
Examples of such metrics include the BTI, PTI, and TTI.  

SHRP-2 Program Report S2-L02-RR-2 presents a methodology that uses semi-
variance measures for identifying reliability impacts of congestion. Semi-variance (𝜎𝜎2𝑟𝑟 ) is 
a one-sided variance metric that uses a reference value r instead of the mean as the 
basis for calculation. Only observations 𝑥𝑥𝑖𝑖 greater than (or less than) the reference 
value are used: 

        𝝈𝝈𝑷𝑷𝟐𝟐 = 𝒙𝒙
𝑷𝑷
∑ (𝒙𝒙𝑽𝑽 − 𝑷𝑷)𝟐𝟐𝑷𝑷
𝑽𝑽=𝒙𝒙       𝒙𝒙𝑽𝑽 ≥ 𝑷𝑷                                     Eq.  1-6 

For TTR analysis, the typical value assigned to r is the minimum travel value 
observed for the entire study period (e.g., a year). Low semi-variance values indicate 
high reliability on a route. Comparing semi-variance values throughout the day can be 
used to identify peak time periods and how reliability fluctuates throughout the day. 

TTR metrics can be used by different transportation system managers for various 
purposes (e.g., transportation agency planning and programming decisions, as well as 
prioritizing improvements to transportation facilities based on relative impacts).  

Step 7. Make Decisions 

The final step in developing TTRMS is leveraging knowledge gained from the 
analysis for decision-making about actions making a significant impact on TTR. Key 
questions can include: 

• When will investments in capacity improvements be necessary, given the current 
distribution of TT?  
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• Are proposed operational improvement actions expected to better TT and TTR? 

TTR has been the subject of much research in recent years. Appendix-A presents 
a summary of notable studies cited in published literature. 

1.8 Research Motivation 

The reported research had four major goals, which are listed below: 

• The first goal was developing an inexpensive system for monitoring traffic flow 
on highways and roadways. 

• The second goal was designing a versatile system that permitted researchers to 
conduct speed reliability and origin/destination studies, among other 
investigations. 

• The third goal was generating probabilistic model(s) for predicting and detecting 
traffic flow changes due to weather, poor road surface conditions, road incidents, 
and congestion. 

• The fourth goal was investigating various schemes for proactively preventing 
road congestion.  

1.9 Report Structure 

This report consists of eight chapters, which are organized as follows: 

Chapter 1: Includes a general introduction of the scope of this report, including a 
discussion about measurement techniques used for collecting travel time (TT); travel 
time reliability (TTR) metrics and monitoring system; requirements for traffic 
performance management; and the motivation for this research. 

Chapter 2: Includes development of an accurate Bluetooth station used for 
collecting travel time (TT). This chapter includes a description of the system and field 
testing.  

Chapter 3: Describes a set of processes that must be applied on the measurements 
to estimate TT.  This chapter also introduces improvements to Bluetooth system, and it 
compares it with the inductive loop detector (ILD) traffic monitoring system.  

Chapter 4: Includes information necessary to understand the framework for 
processing the NPMRDS dataset, including limitations and challenges associated with 
utilizing the dataset. 
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Chapter 5: Describes methods and processes for anomaly detection and outlier 
removal, which are used to obtain a cleansed NPRMDS dataset. 

Chapter 6: Details the use of NPMRDS to compute required performance 
measures, as defined in 23 CFR Part 490 of Federal Register, vol. 82, no. 11. 

Chapter 7: Includes a description of logit, probit and artificial neural network (ANN) 
models, which were designed for incident classification. This chapter also includes a 
description of a Bayesian model for identifying non-recurrent congestion.  

Chapter 8: Presents research outcome and makes recommendations for further 
research work. 
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2. BLUETOOTH-STATION DEPLOYMENT 
2.1 Introduction 

Developing an accurate Bluetooth station for collecting TT was completed and 
field-tested at multiple locations in the vicinity of Oklahoma City (OKC) and Tulsa. A 
description of the system and field testing is available in the next section. 

The proposed TT system consists of Bluetooth stations for detecting Bluetooth 
devices associated with vehicles using Ubertooth-one [21]—an open source 2.4 GHz 
wireless development platform used for Bluetooth sniffing. Each Bluetooth station is 
connected to a Linux box (i.e., Beaglebone) that reads data collected by Ubertooth-one 
before transmitting the data to a back-end server, where it is stored and processed in 
real-time. Figure 2-1 depicts the overall proposed system architecture. 

 

Figure 2-1 System Architecture. 

2.2 Removing Unwanted Duplicate LAPs 

The OU research team configured system hardware to sniff Bluetooth device LAP 
for passing vehicles. Since this task is performed in milliseconds and estimated time for 
a vehicle to remain in the Ubertooth sniffing zone is approximately one second, 
duplicate records are possible. Based on experiments, the team determined Bluetooth 
device LAP will be detected between six and 10 times during the time the vehicle is in 
the sniffing zone (i.e., number of detections for an LAP [Dn] equals vehicle time in 
sniffing zone [Tv] divided by time required to detect an LAP [Td],—Dn = Tv/Td). For 
example, given average time of vehicles in sniffing zone is 1000 milliseconds and 
average time of LAP detection is 135 milliseconds,  Dn = Tv/Td = 1000/135 = 7.  

Modifications were made to eliminate false data before transmission to server. 
Defining a buffer permits 128 stored LAPs. For each newly detected Bluetooth device, a 
window search inside the buffer checks for duplicates among the most recent 32 LAPs. 
Two factors must be considered: 1) eliminate Ubertooth dongle LAP and 2) determine 
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when buffer index is shorter than searching window size length (i.e., index of buffer < 
size of search window 32). Only then can the search operation continue to look for 
duplicates among LAPs stored in the end of the buffer.  

Applying this method ensures that expected time for detecting 32 unique LAPs will 
exceed the time a vehicle remains in the sniffing zone. For a three-lane highway 
segment with vehicles spaced at a safe distance, time required for 32 vehicles to pass 
the sniffing zone (T32v) will be greater than the time one vehicle remains in the 
detecting zone (T1v)—T32v > T1v. 

Buffer size required to eliminate duplicate LAPS should be configured based on 
sniffing zone and selected antenna. This method for eliminating duplicates 
demonstrated a sharp increase in data accuracy. Figure 2-2 shows a flowchart of 
processes implemented to remove duplicate Bluetooth IDs. 

 

Figure 2-2 Flowchart of Bluetooth ID Duplicate Removal. 
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2.3 Real-time Communication System 

One primary objective for this project was developing and deploying a Real-Time 
Traffic Monitoring System (RTTMS). The research team employed WebSocket for 
facilitating communication between REECE and server, which guaranteed detecting and 
calculating TT in real time, The WebSocket Protocol is an independent TCP-based 
protocol that provides full-duplex communication channels over a single TCP 
connection. Although WebSocket is designed for implementation in web browsers and 
web servers, the protocol can also be used by any client or server application. Its only 
relationship to HTTP is that its handshake is interpreted by HTTP servers as an 
Upgrade request. The protocol improves interaction between a station and a website, 
facilitating live content and the creation of real-time data. This functionality is made 
possible by establishing a standardized method for the server to send content free from 
client solicitation to the browser, and then allow messages to pass back and forth while 
maintaining an open connection. In this way, an ongoing, two-way (i.e., bi-directional) 
conversation is possible between a browser and the server [22]. 

2.4 Websocket Message Types 

The objective of the following messages is establishing a secure connection 
between server and stations, guaranteeing real-time data flow for calculating TT 
changes and detecting various activity (e.g., roadway blocking, construction, weather 
effects) in short time. Messages also manage connection loss between stations and 
server by performing backups when connection is recovered. For example: 

● Station Registration Message (authentication): Message is sent only on the 
station’s first deployment and consists of station ID and location, using latitude and 
longitude. 

● Bluetooth Single Message (real-time detection): Given that a Bluetooth device is 
detected, LAP and detection time stamp will be accurate. 

● Multi Bluetooth Message (detection back up when connection failed): Message 
sends a backup of detected LAPs when connection between REECE and server is not 
working. 

2.5 Back-end Processing and Storage (Server Side) 

In order for the base station to receive, process, and store data arriving from 
Bluetooth stations, the research team installed and configured a Microsoft Windows 
server in the OU network, whereby Bluetooth stations can gain access using their 
unique IP address. To support real-time communication between server and Bluetooth 
stations, the team utilized a WebSocket connection for opening bidirectional 
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communication. WebSocket is deployed on a specific server port so that each station 
can access the server by way of its IP address and this particular port.  

A database was designed and implemented using Microsoft SQL server for storing 
data received from Bluetooth stations onto the server. The database is composed of 
tables representing highway, station, detected vehicles, and detected passing time data, 
among other information. Figure 2-3 depicts the database schema diagram.  

A web application using PHP was developed to maintain WebSocket connection 
between server and station nodes and to listen to a specific port. Given that a message 
arrives on the port, the application will verify message type (e.g., registration, single 
data, multiple data) and store the message in the database for data processing and 
analysis at a later time. Figure 2-4 depicts the connection and message transferring 
sequence between server and station node. 

Any Bluetooth station can communicate with the server via the three types of 
messages named above. Given that a Bluetooth station opens socket connection with 
the server, an empty station object will be created and stored in memory; the object will 
contain information only about the connection (e.g., station IP address). It is important to 
know that Bluetooth station IP addresses are not static and that the station cannot send 
data until it sends a registration message containing information like station ID, serial 
number, highway and GPS location, and a sample registration message, as illustrated 
in the JSON messages shown in Figure 2-4. 

The server uses the registration message to validate that the communicating 
station is authorized by comparing Bluetooth station ID and serial number with 
predefined information stored in the database. Given that the information matches, the 
Bluetooth station object will be flagged as authorized and the station can begin sending 
information to the server. In the event that the station is not authorized, the connection 
between the server and the Bluetooth station is closed and the station object is deleted 
from the memory. If a Bluetooth station detects a Bluetooth device, the station will send 
a detection JASON message. 
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Figure 2-3 Database Schema. 

 

Figure 2-4 Message Exchange Between Server and Station. 
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2.6 Deployments and Analysis Results 

To ensure accurate TT estimation, many experiments were conducted for 
collecting and analyzing travel data. Travel data was then compared with information 
provided from HERE and ODOT radar. Using single and multiple Bluetooth stations, we 
were able to estimate number of vehicles, TT, and speed. Data statistics, modeling, and 
prediction results are discussed in the following section. 

2.6.1 Four Bluetooth Stations Deployed in Oklahoma City 

Analysis of a single site Bluetooth station deployment. Data analysis compared the 
number of vehicles that a station was able to detect with a reference data source, like 
HERE or ODOT radar data (i.e., 7,688 detected vehicles). Statistical information was 
extracted from data collected between 10/18/2016 and 10/25/2016.  

Deployment encountered a number of problems. A list is provided below. 

1. Aircard Sprint Franklin U772 was not compatible with the REECE OS. The 
connection between the REECE and the server was dropped most of the time, 
and mounting errors caused the REECE system kernel to enter panic mode. 

2. Station clearing system-logs were not implemented, causing the SD cards to 
reach full capacity and stop working.  

3. Units were positioned too far from one another and provided misleading 
information for calculating TT. 

2.6.2 Three Bluetooth Stations Deployed in Tulsa, OK 

Analysis of a single site Bluetooth station deployment. Software adjustments were 
made, and a new deployment was subsequently conducted. A single Bluetooth station 
was deployed to collect data on OK highways I-44 and 169 between 12/10/2016 and 
01/06/2017. 115,256 vehicles were detected. Figure 2-5 (a) shows detected LAPs 
binned to collection date. Mean was 3974, and median value was 4500. Saturday and 
Sunday had the lowest rates; the number of vehicles increased during business days. 
Thursday traffic rates were the highest. Figure 2-5 (b) shows detected vehicles on a 
single day and reflects distribution of detection over 24 hours. Traffic counts increased 
between 7 and 8 a.m. and after 5 p.m. 

Analysis of TT comparing Oklahoma City, OK with Tulsa, OK. During the 
experiment, the proposed system matched 4740 records from two sites over an 18-day 
period. Figure 2-6 shows the distance between sites. Calculated TT mean was 224.37s 
(or 3 minutes and 44 seconds), and median was 222s. Figure 2-7 shows TT distribution. 
Daily average for matched Bluetooth IDs was 237, and median was 196, as shown in 
Figure 2-8. 
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    (a)      (b) 

Figure 2-5 (a) Daily Bluetooth ID's Detect by One Site; (b) Bluetooth ID’s 
Distribution During One 24 Hour Period. 

 

Figure 2-6 Deployment Sites and Separation Distance. 

Several improvements were made during this deployment. These are listed below. 

1. When comparing the OKC and Tulsa deployments, for the latter the OU research 
team used stable AC341u Aircards, ensuring that the connection between 
stations and the server was operational most of the time. 

2. Reducing the distance between Bluetooth stations increased the number of 
matched Bluetooth IDs and accurate TTs. 
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3. Limiting system log size prevented the SD card from reaching full capacity, 
requiring less frequent site maintenance.  

 

Figure 2-7 TT Distribution. 

 

Figure 2-8 Matched Bluetooth Ids in Number Over 24-Hour Period. 
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3. INTEGRATION OF BLUETOOTH TRAVEL TIME MEASUREMENTS INTO ODOT 
TRAVEL TIME SYSTEM  

To estimate TT based on detected vehicles traveling from checkpoint A to 
checkpoint B, a set of processes must be applied on the measurements. Figure 3-1 
represents a typical Bluetooth traffic monitoring system. Multiple Ubertooth sniffers were 
deployed with variant distances on highways for detecting vehicle MACs. 

 

Figure 3-1 Bluetooth Traffic Monitoring System. 

3.1 Removing Unwanted Duplicated MACs 

Ubertooth was configured to sniff Bluetooth device MACs traveling on the highway. 
Since sniffing MACs occurs in just microseconds and estimated time for a vehicle to 
remain in the Ubertooth sniffing zone is more than 1 second, the same MAC might be 
detected multiple times. Consequently, modifications to the proposed system were 
made to eliminate duplicated data before uploading to the cloud. A buffer can store 128 
MACs. Hence, for every newly detected Bluetooth device, a window search occurs 
inside the buffer to identify duplicates among the last 32 MACs. Two considerations 
were made. First, eliminate Ubertooth dongle MAC. Second, state when the index of 
buffer is smaller than the size of the searching window (i.e., index of the buffer < size of 
search window 32). A search operation continues to look for duplicates among LAPs 
stored in the end of the buffer. Figure 2-2 illustrates the flowchart for eliminating 
Bluetooth duplicates. 
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Collected data is saved on REECE before transmitting information to the cloud 
using a simple MySQL lite database. Each MAC address is accompanied by a time 
stamp and unique ID. The database table structure is shown in Figure 3-2. 

 

 

Figure 3-2 Bluetooth MySQL Database on REECE. 

The database consists of one table with six columns, as indicated below: 

• Seq: Sequence of Bluetooth device labelled in the database 

• MAC: MAC of detected Bluetooth device 

• Det_TIME: Detection time of Bluetooth device 

• Trans_TIME: Transmission time of information packet to the server 

• Exp_TIME: Time to determine unnecessary transmission of detected Bluetooth 
device information; fixed value not in use  

• ACK_TIME: Acknowledgment time wherein REECE receives a message from the 
cloud containing sent packet sequence 

3.2 Vehicle Reidentification 

A vehicle can be re-identified by searching for the same MAC address at 
consecutive checkpoints. Matched MAC addresses provide a TT value based on 
differences in detection time. Vehicle speed is based on known distance between 
checkpoints.  

 TT per vehicle can be calculated using the following equation: 

                                               𝑻𝑻𝑻𝑻𝒑𝒑𝑷𝑷𝑷𝑷 𝒗𝒗𝑷𝑷𝒗𝒗𝑽𝑽𝑷𝑷𝒗𝒗𝑷𝑷 = 𝑫𝑫𝑻𝑻𝒃𝒃 −  𝑫𝑫𝑻𝑻𝑽𝑽                                      Eq.  3-1 

where DT is the detection time at one checkpoint.  
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Outliers can occur when one vehicle travels between two points on a different 
journey. For an accurate estimation, outliers must be identified and removed. The 
following algorithm is proposed for this purpose.  

• Find TT distribution of observed segment.
• Calculate mean TT and SD σ.
• TT is considered an outlier given it meets the following equation:

      𝑻𝑻𝑻𝑻𝒑𝒑𝑷𝑷𝑷𝑷 𝒗𝒗𝑷𝑷𝒗𝒗𝑽𝑽𝑷𝑷𝒗𝒗𝑷𝑷 >  𝑻𝑻𝑻𝑻𝒎𝒎𝑷𝑷𝑽𝑽𝑷𝑷 + 𝟐𝟐𝝈𝝈           Eq. 3-2  

3.3 Travel Time Estimation 

TT can be estimated by finding the mean of the distribution of TT per vehicle 
measurements.  

Experiments and analysis results. A number of experiments were conducted to 
collect and analyze travel data for achieving accurate TT estimation. Using single and 
multiple Bluetooth stations, number of vehicles, TT, and speed estimation can be 
estimated.  

Deployment was tested during March 2017 in Tulsa, OK. Details are summarized 
below.  

1. Testing deployment had seven units running throughout the city of Tulsa, OK
during a 10-day period.

2. TT calculated between the selected locations were approximately equal to
Google TT estimates.

3. Traveling vehicles between locations were detected at distances of 5 and 10
miles.

Data insights were made following data collection. Daily average of detected
vehicles was over 5.000 per day. Table 3-1 provides detailed information for each unit. 
Figure 3-3 shows the location of units deployed throughout the city of Tulsa, OK. 
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Table 3-1 Tulsa, OK Deployments. 

station ID Daily average 
Detected Vehicles 

Antenna Location and Distance from 
Highway 

BT-054 8790 5 dbi internal Side highway, apx 1 meter far 

BT-061 5140 5 dbi internal Under Bridge , apx 8 meters far 

BT-062 4560 3 dbi internal Above highway, apx 15 meters 
far 

BT-063 6010 3 dbi internal Side highway, apx 1 meter far 

BT-064 3950 5 dbi internal (tilted) Side highway, apx 1 meter far 

BT-065 6160 3 dbi internal Side highway, apx 1 meter far 

BT-066 5550 3 dbi internal Above highway, apx 5 meters far 

 

 

 

Figure 3-3 Locations of Deployed Units in Tulsa, OK. 
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Figure 3-4 Average TT and Average Daily Detected Vehicles Between Two 
Locations. 

Deployment-calculated TT was approximately equal to Google TT estimates. An 
average of over 200 vehicles were detected per day between two locations among all 
deployed units. Number of detected vehicles depends on a number of factors, including: 

• distance between the two locations, 

• traffic flow, 

• attractions approximate to deployed units (e.g., downtown, main apartments 
complexes, city exits), and 

• antenna type/distance between cabinet and the highway. 

Figure 3-4 and Table 3-2 provide detailed information for detected vehicles traveling 
between two locations. 
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Table 3-2 Average Travel Time and Average Daily Detected Vehicles. 

Units Average TT Average daily detected vehicles 

BT-054 BT-061 12:52 70 

BT-054 BT-062 07:35 34 

BT-054 BT-063 05:30 220 

BT-054 BT-064 06:21 67 

BT-054 BT-065 02:10 124 

BT-054 BT-066 05:36 165 

   

BT-061 BT-062 08:00 45 

BT-061 BT-063 06:40 372 

BT-061 BT-064 10:30 25 

BT-061 BT-065 11:05 4 

BT-061 BT-066 13:20 6 

   

BT-062 BT-063 07:44 8 

BT-062 BT-064 07:38 10 

BT-062 BT-065 06:40 38 

BT-062 BT-066 10:00 11 

   

BT-063 BT-064 04:36 285 

BT-063 BT-065 05:10 22 

BT-063 BT-066 08:50 9 

   

BT-064 BT-065 04:00 113 

BT-064 BT-066 07:34 55 

   

BT-065 BT-066 03:52 672 
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3.4 Study of Travel Time Between Two Units 

In this section the results of data collected between two different road segments 
will be discussed. 

3.4.1 TT between units Bluetooth -061 and Bluetooth -063 

Distance between units Bluetooth-061 and Bluetooth-063 was 5.2 miles, as 
shown in Figure 3-5. Figure 3-6 through Figure 3-9 illustrate TT distribution, daily 
number of detected vehicles, hourly number of detected vehicles on a single day, and 
hourly average TT on a single day. Bluetooth sniffers detected an average of 372 
vehicles/day and calculated TT of 06:40, which is one minute longer than Google 
estimates. Of note is that road work may have had an effect on the difference between 
the two values. During rush hour (i.e., 2 to 6 p.m.), the hourly rate of detected vehicles 
was approximately 40. 

Figure 3-5 Bluetooth Monitoring System for 5.2-mile Distance on I-44 in Tulsa, OK. 

Figure 3-6 TT Distribution. 
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Figure 3-7 TT Values Based on Bluetooth on I-44 in Tulsa, OK. 

 

Figure 3-8 Hourly Average TT on a Single Day. 
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Figure 3-9 Hourly Number of Detected Vehicles on a Single Day. 

3.4.2 Units Bluetooth-065 and Bluetooth-066 

The distance between units Bluetooth-065 and Bluetooth-066 is 4.1 miles. 
Bluetooth sniffers detected an average of 672 vehicles/day and calculated TT of 03:52, 
which was the same as the Google estimate. During rush hour (i.e., 3 to 5 p.m.), the 
hourly rate of detected vehicles was approximately 70. Figure 3-10 through Figure 3-14 
illustrate the segment location, TT distribution, daily number of detected vehicles, 
hourly number of detected vehicles on a single day, and hourly average TT on a single 
day. 

Figure 3-10 Bluetooth Monitoring System for 4.1-mile Distance on BA-Expressway 
in Tulsa, OK. 
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Figure 3-11 TT Values Based on Bluetooth on BA-Expressway in Tulsa, OK. 

 

Figure 3-12 Number of Detected Vehicles on a 4.1-Mile Segment over a 5 Day 
Period. 
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Figure 3-13 Hourly Number of Detected Vehicles on a Single Day. 

 

Figure 3-14 Hourly Average TT on a Single Day. 

No major changes were detected in TT between the two locations over a period of 
24 hours. 
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3.5 Improvements to Bluetooth System 

Previous experiments have shown that the number of vehicles detected between 
two locations is extremely low. An alternate antenna was tested to improve traffic 
system penetration. Figure 3-15 and Figure 3-16  depicts two antennas considered 
for Bluetooth detection. Figure 3-15 shows an antenna used in previous experiments, 
which is an internal omni-directional antenna with 5dBi gain and 50 Ω impedance. 
Figure 3-16 shows an alternative antenna (TP-Link TL-ANT2414A), which is an 
external directional antenna with 14dBi and 50 Ω impedance. 

Figure 3-15 Internal Omni-directional Antenna 

Figure 3-16 External Directional Antenna 

Figure 3-17 and Figure 3-18 show a substantial change in the number of 
detected vehicles when using an external directional 14dBi antenna instead of an 
internal 5dBi antenna. 
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Figure 3-17 Hourly Number of Detected Bluetooth Devices on a Single Site. 

 

Figure 3-18 Daily Number of Detected Bluetooth Devices on a Single Site. 
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3.6 Inductive Loop Detectors for Travel Time Estimation 

An inductive loop, shown in Figure 3-19, consists of wire "coiled" to form a loop 
shaped as a square, circle, or rectangle for installation into or under the roadway 
surface. Inductive loops work like a metal detector, measuring the change in magnetic 
field when objects pass over. As a vehicle drives over a loop sensor, the loop field 
changes so that the detection device detects the presence of an object (e.g., vehicle). 
Inductive loops are referred to as presence detectors. Traffic detection devices are often 
used in combination with axle sensors to collect classification data, such as vehicle 
speed and length. 

 

Figure 3-19 Square Inductive Loop. 

Two commonly used shapes for inductive loops are round and square/rectangular. 
Many loop designers have theorized that a circular shape provides optimum detection 
because a uniform magnetic field is produced without dead spots. Proponents of the 
round loop argue that the circular design maximizes loop sensitivity for detecting both 
motorcycles and high-bed trucks, while eliminating splash over from adjacent lanes. 
Other cited advantages include elimination of sharp corners and reduction in wire 
stress. Modern techniques have mitigated difficulties associated with cutting a circular 
shape in the pavement.  

An inductive loop is composed of a continuous length of wire that enters and exits 
from the same point. Both ends are connected to the loop extension cable, which in turn 
connects to the vehicle detector. The detector powers the loop, causing a magnetic field 
in the loop area. The loop resonates at a constant frequency that is monitored by the 
detector. A base frequency is established when there is no vehicle atop the loop. When 
a large metal object, such as a vehicle, passes over the loop, resonate frequency 
increases. The change is sensed and, depending on the design of the detector, forces a 



47 

normally open relay to close. The relay will remain closed until the vehicle leaves the 
loop and the frequency returns to the base level. 

3.6.1 Study of the Inductive Loop Signature 

Generated ILD signals vary from one vehicle to another. Accordingly, an ILD 
signature depends on vehicle length, metal surface, speed, and the way in which a 
vehicle will pass over a loop. Figure 3-20 shows the difference in signatures between 
SUV and sedan vehicles (e.g., variance in signature length and amplitude of the 
magnetic field). While the sedan has one peak point, an SUV has two. Also, it is 
important to note that signatures of the same vehicle will not be identical on another 
loop. In Figure 3-20, the red and blue signatures for each vehicle represent the 
signature detected on the lead and lag loops, respectfully, with an 8-foot distance 
between them. Variations will increase for longer distances between two loops, hence, 
magnetic field strength will vary among vehicles of the same class. ILD signals have 
many applications in length-based vehicle classifications due to accurate measure of 
vehicle length.  

Loop Shutdown. Two phenomena are cause for possible inductive loop 
malfunction: 

• Lightning strike: Given that lightning strikes relatively close to a road-embedded
loop, it is possible that a large static charge will be transmitted through the loops
into the loop board circuitry. Although the loop board is equipped with a certain
level of electronic protection against this type of event, lightning strikes might
cause the loop board to lock up or shut down. A strike is unlikely to cause
damage to a unit that is grounded.

• Electrical noise: Similar to a lightning strike, other sources of strong electronic
signals could cause the loop board to detune.
In some cases, inductive loops do not shutdown even though they add noise to

the ILD signals and require retuning to fix an issue. Figure 3-21 illustrates various noisy 
signatures. 



48 

Figure 3-20 ILD Signatures of Two Vehicles. 

Figure 3-21 Noisy ILD signals. 
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3.6.2 Phoenix II Diamond Traffic 

Phoenix II (See Figure 3-22) is a multi-lane, time interval counter/classifier 
designed for permanent installations or large portable applications. The classifier can 
count from one to eight lanes using axle sensors; 16 lanes with loops; or one to eight 
lanes with gap, headway, and speed by axle type. The system can be fitted with four 
road tube sensors, two to eight remote inputs, four to 16 presence inductive loop 
sensors, and four to eight piezo or resistive sensor inputs.  

When Phoenix II is activated in vehicle output in comma delimited output 
(VO=CMA), the classifier generates signatures as a string of time-series data samples, 
separating each vehicle signature by CR/LF. 

 

Figure 3-22 Phoenix II Diamond Traffic Unit. 

Deployment setup. The following steps are necessary for deployment. 

• Phoenix II Diamond Traffic with 1KB sampling rate is connected to a standard 6’ 
by 6’ rectangular inductive loop.  

• REECE is connected over RS-232 with Phoenix II and over ethernet to the cloud. 

 

Figure 3-23 illustrates the ILD Traffic Monitoring System setup at Hefner parkway 
in Oklahoma City, OK. 
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Figure 3-23 ILD Traffic Monitoring System. 

Preprocessing the data. Signature re-identification is accomplished in the following 
manner. 

1. Data cleaning to ignore incomplete or distorted signatures 

2. Speed-based normalization on the time domain 

3. Vehicle length estimation 

4. Amplitude Normalization between 0 and 1 

Vehicle reidentification and TT estimation 

1. Comparing signatures with time window less than 300 seconds 

2. Comparing signatures with vehicle length difference less than 40 cm 

3. Vehicle re-identification by way of matching signatures via either Pearson 
Correlation or Relative Entropy 

4. TT calculation indicating time difference between the best matched signatures 

5. Data spike detection 

6. TT estimation given mean value of spike data 

Data cleaning. Some signatures were interrupted due to vehicle lane change or 
hardware fault in the loops. All signatures contained interruptions that were deleted from 
the data.  
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Speed-based normalization. Signature length is dependent upon vehicle length 
and speed. Test setups had two convolutional loops: one at the upstream location and 
another at the downstream location. Distance between loops was 8ft, and detection time 
at each loop was provided by Phoenix II. Speed can be calculated using the following 
equation: 

  𝑽𝑽 = 𝑫𝑫𝑽𝑽𝑫𝑫𝒕𝒕𝑽𝑽𝑷𝑷𝑷𝑷𝑷𝑷
𝑻𝑻𝟐𝟐− 𝑻𝑻𝒙𝒙

       Eq.  3-3 

where distance is the amount of separation between two loops at one site; T1 
represents detection time at the first loop; and T2 represents detection time at the 
second loop. 

A signature can be normalized by fixing the speed for all vehicles to 60 mph so 
that a new signature length can be calculated from the fixed speed. 

   𝒗𝒗𝑷𝑷𝒐𝒐𝑷𝑷𝒎𝒎𝑽𝑽𝒗𝒗𝑽𝑽𝒏𝒏𝑷𝑷𝒅𝒅 =  𝒗𝒗𝒐𝒐𝑷𝑷𝑽𝑽𝒐𝒐𝑽𝑽𝑷𝑷𝑽𝑽𝒗𝒗 × 𝒗𝒗𝟔𝟔𝒙𝒙 𝒎𝒎𝒑𝒑𝒗𝒗

𝑽𝑽
         Eq.  3-4 

where V is vehicle speed;  𝑙𝑙𝑜𝑜𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜  is  signature length at speed (V);  𝑣𝑣60 𝑚𝑚𝑚𝑚ℎ is the 
fixed speed for all vehicles at 60 mph; and 𝑙𝑙𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 is speed normalized signature 
length. 

Cubic spline interpolation was applied to shrink (or compress) the signature to the 
normalized length. This process is a polynomial method that provides a smoother and 
smaller error when compared with other polynomials [6]. 

The tested device suffered from hardware issues. Signatures on four lanes were 
undetectable on both convolutional loops. To mitigate this problem, the research group 
determined that one lane detected 90% of vehicles on both loops, thus was 
subsequently selected for the study. Vehicle speeds undetectable on both loops were 
estimated based on speed mean of all detected signatures in the same minute. Figure 
3-24 through Figure 3-27 compare number of detected vehicles between the two loops 
on a single site and number of detected vehicles between the two sites. 
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Figure 3-24 Normalized Signature. 

 

Figure 3-25 Number of Vehicles Detected on Both Loops at Britton Site. 
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Figure 3-26 Number of Vehicles Detected on Both Loops at Hefner Site. 

 

Figure 3-27 Number of Detected Vehicles on Britton and Hefner sites. 
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Vehicle length estimation. After normalizing signature length based on speed, 
vehicle length can be estimated from signature length. Phoenix II sampling rate is 
1000/s; therefore, signature length can be considered the time required for a vehicle to 
cross over a loop. Based on this, vehicle length can be estimated from the following 
formula: 

Eq. 3-5Vehicle Length = Vehicle Speed x Signature Length

Vehicle reidentification. Two methods were tested to determine the most 
correlated signatures (e.g., Pearson Correlation or Relative Entropy). Pearson 
Correlation depends on signature shape and was used to find linear dependences 
between the two signatures. Two signatures are correlated if they are similar in 
slope rates: 

where n is the number of samples (i.e., signature length). When r =1, signals are 
identical and correlated. TT and corelated signatures using Pearson correlation 
are shown in Figure 3-28 and Figure 3-29, respectively. 

Figure 3-28 TT Using Pearson's r Correlation.  
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Figure 3-29 Correlated Signatures Using Pearson Correlation. 

Since the amount of vehicle metal is invariant, Relative Entropy assumes 
signatures of the same vehicle will have the same value for area under the curve. 
However, slope rate and strength of magnetic field can change based on the way a 
vehicle is passing over the loop. Relative Entropy was used to compute relativity of the 
pdf value between two signatures:  

     𝒅𝒅 =  ∑ 𝒑𝒑𝒌𝒌 𝒗𝒗𝒐𝒐𝒐𝒐𝟐𝟐(𝒑𝒑𝒌𝒌
𝒒𝒒𝒌𝒌

)𝑷𝑷
𝒌𝒌        Eq.  3-7 

where 𝑝𝑝𝑘𝑘 , 𝑞𝑞𝑘𝑘 = probability functions for both signatures. When d = 0 =>, both signatures 
have identical PDF values and are correlated. TT and corelated signatures using 
Relative Entropy correlation are shown in Figure 3-30 and Figure 3-31, respectively. 
Correlated signatures using Pearson Correlation and Relative Entropy are shown in 
Figure 3-32. Both methods were successful in re-identifying vehicle signatures. 
Relative Entropy was characterized with higher noise values than Pearson Correlation. 
Both methods were applied to achieve an improvement in vehicle signature correlation. 
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Figure 3-30 TT Using Relative Entropy. 

 

Figure 3-31 Correlated Signatures Using Relative Entropy.   
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Figure 3-32 Correlated Signatures Using Pearson Correlation and Relative 
Entropy. 

 Figure 3-33 and Figure 3-34 show TT values of ILD traffic monitoring systems 
divided into five periods: 00:00 to 07:00, 07:00 to 10:00, 10:00 to 16:00, 16:00 to 
20:00, 20:00 to 24:00. The percentage under each graph represents total number of 
vehicles with TT between 45 and 70 mph compared to total number of re-identified 
vehicles. Clearly, noise ratio increases during rush hour periods from 7 to 10 a.m. and 4 
to 8 p.m. 
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Figure 3-33 Travel Time Values of ILD Traffic Monitoring System on Monday. 
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Figure 3-34 Travel Time Values of ILD Traffic Monitoring System During Weekend. 
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TT using data spike detection algorithm. Correlated signatures contained a significant 
amount of noisy data, where 27% provided the correct TT and 73% experienced error 
values. Computing overall mean of correlated signatures resulted in a TT value longer 
than expected. To illuminate the noise, spike detection algorithms where applied. TT 
values were binned into 10-second groups, and a spike was selected for estimating TT 
given that half of the samples inside the spike were greater than the number of samples 
in other binned groups. Subsequent to detecting spike data, TT can be estimated as the 
mean value of all samples inside the spike. 

• Spike detection is calculated as:
𝑆𝑆𝑖𝑖𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑥𝑥

2
= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑟𝑟𝑜𝑜𝑔𝑔𝑚𝑚 𝑖𝑖  ; 𝑆𝑆 ∈ [1,𝑛𝑛]; 𝑆𝑆 ≠ 𝑥𝑥            Eq.  3-8  

• TT estimation is represented by: 
        Eq.  3-9 

Figure 3-35 Travel Time Data Spike. 

Figure 3-35 shows a sample of TT values for a single hour, in which the search 
window was 300 seconds. Data spike was considered for estimating TT value. Figure 
3-36 illustrates estimated TT values for a single day wherein TT values were grouped
into 20-minute segments. Total number of segments was 72. Unfortunately, the
algorithm was not able to function well during morning rush hour (7:20 to 9 a.m.) and
evening rush hour (3:20 to 6 p.m.). For 17 segments, the algorithm wasn’t able to detect
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a data spike or estimate TT. Figure 3-37 illustrates examples in which the algorithm was 
unable to detect data spikes.  

Several methods have been investigated to improve real-time TT accuracy (e.g., 
reducing correlation search window from 5 minutes to 2:30 minutes for 1-mile distance). 
The 5-minute search window proved more accurate than the shorter period, primarily 
because it aided in flattening error values. See Figure 3-38. 

 

Figure 3-36 Estimated TT Values for 1-mile distance. 

 

Figure 3-37 Data Spikes During Rush Hour. 
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Figure 3-38 TT for a 2:30-minute vs. 5-minute Search Window. 

Improving TT accuracy based on vehicle length. Longer vehicles have more 
unique signatures, which, in turn, provide improved accuracy in signature correlation 
and TT estimation (See Figure 3-39 and Figure 3-40). Sedan passenger cars are the 
most common vehicle type with the majority characterized by the same signature 
shape. Hence, sedans prove to be the primary cause for error when estimating TT 
(See Figure 3-41). The optimized algorithm uses only long vehicles for replacing 
missing TT values with estimates. Figure 3-42 illustrates the way in which applying 
the length-based TT estimation enhancement reduced the number of segments 
missing TT from 17 to 13.  

Figure 3-39 Correlated Signatures for Long Vehicles. 

Figure 3-40 TT for Long Vehicles. 
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Figure 3-41 Correlated Signatures for Sedan Vehicles. 

 

Figure 3-42 TT Estimation Using Vehicle Length Enhancement. 

Another enhancement in the algorithm also aided in increasing system reliability. 
When searching for a data spike, the algorithm compares neighboring data groups to 
the group with the maximum number of vehicles. Given that a neighboring group has a 
vehicle number with more than half vehicles characterized with a maximum vehicle 
number, both data groups will be combined as a single data spike. These will then be 
compared with all other groups for estimating TT based on average of TT values inside 
the new data group. Figure 3-43 illustrates the way in which this final optimization 
reduced the number of segments with missing TT from 13 to only 4 of 72 segments. 
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Such optimization enables the system to estimate TT up to 9% of the time and to 
update TT estimation every 20 minutes. 

Figure 3-43 TT Estimation Using Optimized Spike Detection Algorithm. 

Figure 3-44 Comparison Between ILD and Bluetooth Traffic Monitoring Systems. 
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Comparison between ILD and Bluetooth signatures (See Figure 3-44): 

• The ILD system demonstrated higher penetration than the Bluetooth system, 
although both were characterized by the same distribution. Only 20% penetration 
was achieved using Bluetooth sniffer with external directional antenna. 

• Both systems detected TT and facilitated TT estimation. However, the ILD 
system experienced more noise—only 27% of the data were within the correct 
TT. Thus, the ILD system requires advanced processing to filter out noise and 
estimate TT. 

•  Both systems proved reliable for estimating TT. While the Bluetooth system 
provided instant, accurate TT 99.9% of the time, the ILD system provided correct 
TT estimates 94% of the time and updated TT measures every 20 minutes.  

• The Bluetooth system was considered a real-time system since it instantly 
provided TT measures. However, data was measured for a combination of all 
traffic lanes. Although data was reported only every 20 minutes, the ILD system 
estimated and provided more precise TT measures, as estimates were provided 
on a per lane basis.  

• The ILD system is a rich information system, reporting measures for vehicle 
length, class, and vehicle speed on a single site, as well as TT per lane, while the 
Bluetooth system provided only TT. 

• Many factors affect ILD system accuracy (e.g., vehicles changing lanes, vehicles 
changing speed while crossing the loops, congestion, distance between two 
sites, and other environmental factors that cause electrical noise). Bluetooth 
systems have fewer factors that affect performance (e.g., type of the antenna, 
distance between sniffer and the roadway). 
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4. TRAVEL TIME DATA COLLECTION ALGORITHMS 
The accuracy of the method described in Chapter 2 proved inadequate for TT 

calculation and analysis. Hence, a separate dataset was chosen for developing TT 
models. This new dataset (i.e., National Performance Management Research Dataset 
(NPRMDS) contains TT for all NHS roadways, including those in the state of Oklahoma. 
The following section provides information necessary to understand the framework for 
processing the dataset, including limitations and challenges associated with utilizing the 
NPMRDS. 

4.1 Data Acquisition  

NPMRDS is a vehicle probe-based TT data set acquired by the Federal Highway 
Administration (FHWA) to support its Freight Performance Measures (FPM) and Urban 
Congestion Report (UCR) programs. The dataset reports average TT records observed 
for the entire NHS. Data is collected 24 hours-a-day in 5-minute intervals for freight 
truck vehicles and passenger vehicles. An all-vehicle record combines totals for both 
passenger vehicles and freight trucks.   

Following are proposed uses for NPMRDS: 

• Measure TT on road segments (i.e., Traffic Message Channel Codes 
[TMCs]), routes, corridors 

• Decipher travel patterns throughout the day, week, month, and season 

• Identify peak TT 

• Compare TT across passenger and freight vehicles 

• Analyze urban vs rural conditions 

• Analyze special occurrence days (i.e., days affected by accidents, lane 
blockages, weather) 

• Identify congested areas 

NPMRDS components include two sets of information files: 

1. Monthly average TT data files: 

• TMC code 

• Date (MMDDYYYY) 

• EPOCH (5 minute increments, in the range 0-287) 

• TT–all vehicles (seconds) 
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• TT–passenger vehicles (seconds)

• TT–freight vehicles (seconds)

2. TMC static data files

• TMC code

• Country

• State

• County

• Distance (length of TMC in miles)

• Road number

• Road name

• Latitude

• Longitude

• Road direction (NB, SB, EB, WB)

Passenger vehicle probe data is obtained from several sources, including mobile
phones, vehicles, and portable navigation devices. Freight probe data is obtained from 
the American Transportation Research Institute, which leverages embedded fleet 
systems. Data records for this project were obtained from ODOT after NPRMDS data 
files were collected from a shared FHWA repository accessible only by state DOTs and 
Metro Planning Organization (MPO) agencies. NPRMDS is composed of large TT files 
that include information recorded per segment on NHS roadways. Figure 4-1 depicts 
Oklahoma’s NHS roadways. 
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Figure 4-1 NHS Roadways in Oklahoma. 

 

Figure 4-2 NHS Roadways in Oklahoma Magnified. 
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4.2 Dataset Characteristics: Challenges and Limitations 

NPMRDS is based on instantaneous GPS data records obtained from vehicles 
carrying GPS devices that report location and speed. Combined TT measurements 
reported in NPMRDS are computed as a weighted average of both recorded passenger 
vehicle and freight truck TT according to the number of available probes for each. 
Actual volume for each vehicle type is not reported. Understanding the nature of 
NPMRDS is key for effective data post processing (e.g., anomaly and outlier detection, 
as well as measures for their removal). Challenges and limitations are enumerated 
below: 

4.2.1 Data Quality 

The amount of data in the monthly NPMRDS is sizeable. Moreover, the number of 
records generated per segment for each highway renders conventional tools, such as 
Microsoft Excel, ineffective for post processing. For example, any given typical month 
can generate data in the order of 30 to 40 million records. This number far exceeds the 
one million record capability of Excel. As such, working with NPMRDS data requires 
database and scripting expertise [3, 23].  

4.2.2 High Spatial-Temporal Probe and Record Data Variability 

NPMRDS probe data is based on a variable number of probes and, therefore, 
results in a variable number of records generated at any segment location. Data 
fluctuates considerably depending on time-of-day and day-of-week. Furthermore, 
variability is dependent upon the number of probes per vehicle type at the same location 
and the same time (i.e., passenger vehicle vs. freight truck probes). Figure 4-3 shows 
TMC segment (111N04920) located south of Oklahoma City. 

 

Figure 4-3 TMC "111N04920" Located South of Oklahoma City. 
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Figure 4-4 shows a bar plot for the total number of epochs recorded on TMC 45 
segment (111N04920) per day for 31 days during the month of January 2015. Mean 
value of recorded epochs was 219.5806, and Standard Deviation (STD) was 20.0678. 
This figure clearly demonstrates the number of epochs for the same segment fluctuates 
daily. 

 

Figure 4-4 Daily Bar Plot of Epochs Recorded for TMC 45 During Jan 2015. 

Figure 4-5 details the difference in epoch count per day for two bordering 
segments—TMC 45 and TMC 46. For TMC 46, mean was 184.0968 epochs and STD 
was 24.2918. Epoch count variance is considerable. 

 

Figure 4-5 Bar Plot of Epochs Recorded for Segments 45 and 46 During Jan 2015. 
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Variance per day relative to three time-groupings for segment TMC 45 is shown in 
Table 4-1. Group 1 is indicated by morning hours from 12 a.m. to 8 a.m.; Group 2 
indicates afternoon hours between 8 a.m. and 4 p.m.; and Group 3 represents evening 
hours from 4 p.m. to 12 a.m. Group 2 (i.e., afternoon) generated the greatest number of 
epochs; the least number of epochs were generated during Group 3 (i.e., evening). 

Table 4-1 Probe Epochs Available Per Time of Day for Segment 45. 

Group Group (1): 
12am – 8am 

Group (2): 
8am – 4pm 

Group (3): 
4pm – 12am 

Mean 56.3508% 93.9180% 78.4610% 

STD 8.8708 6.0338 6.8185 

 

When inspecting the number of epochs recorded per vehicle type per day, a 
difference between probe types was evident. As count per probe type varies, combined 
TT computed as the weighted average is highly influenced. Table 4-2 shows the mean 
percentage of epochs per probe type, as well as the percentage of combined TT mean. 

Table 4-2 Mean Number of Epochs Per Probe Type for Segment 45. 

Group Combined Passenger 
Vehicles 

Trucks 

Mean 76.2433% 57.1909% 56.5076% 

STD 20.0678 30.4961 19.5703 

 

Averages across all segments of OK I-35 demonstrate similar results, as shown in 
Table 4-3 and Table 4-4. 

Table 4-3 Probe Epochs Available Per Time of Day for OK I-35 (98 Segments). 

         
Group 

Group (1): 
12am – 8am 

Group (2): 
8am – 4pm 

Group (3): 
4pm – 12am 

Mean 58.1135% 87.8185% 76.6424% 

STD 8.6746 4.4879 5.8671 
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Table 4-4 Mean Number of Epochs per Probe Type for OK I-35 (98 Segments). 

Group Combined Passenger 
Vehicles 

Trucks 

Mean 74.1915% 49.8046% 60.9439% 

STD 16.4836 25.1715 16.4760 

 

4.2.3 Missing Data 

Missing data was evident on rural NHS roadways in Oklahoma when average 
probe number was very low and only a small number of epochs and missing records 
were captured. Large data gaps for several hours made characterizing TT for a 
particular segment highly skewed. This problem was found to a lesser extent, as well, 
on interstate highways and large arterial roadways where the number of probes is 
higher on average. A comparison between the number of epochs generated on I-35 
during January 2014 and January 2015 is provided in Table 4-5. Clearly, the number of 
probes increased for both types of vehicles, particularly for freight trucks, however. This 
phenomenon resulted in an increase in combined TT epochs, from approximately 54% 
to 73%, as shown in Table 4-6. 

Table 4-5 Number of Epochs Recorded per Probe Type. 

Group Combined Passenger 
Vehicles Trucks 

January 2014 481338 388040 234403 

January 2015 649134 435762 533225 

 

Table 4-6 Percentage of Total Epochs per Probe Type. 

Group Combined Passenger 
Vehicles Trucks 

January 2014 53.913306% 43.463262% 26.254816% 

January 2015 72.707661% 48.808468% 59.725022% 
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4.2.4 Bias Toward Lower Speeds 

TT data in NPMRDS is composed of probe data based on GPS records that are 
reported at fixed rates of time. Hence, the slower the probe vehicle speed, the larger the 
number of samples generated as a vehicle travels the length of the roadway segment. 
Consequently, a slow vehicle will report more records than a fast vehicle. Since TT 
reported for a segment is the average of all probe TT calculated during a fixed time 
period and since slow moving vehicles report a higher number of records, average TT is 
biased toward slower moving vehicle speeds. This limitation can be overcome by 
implementing a weighted average, wherein each vehicle is weighted according to the 
number of samples generated prior to computing TT average of the segment. Doing so 
increases data collection complexity, but also eliminates the effect of bias toward slower 
moving vehicles.  

4.2.5 Variability of Segment Lengths 

TMC segments defined for use in NHS roadways vary considerably in length. This 
variability entails several effects on TT reliability and measurement accuracy. In 
general, shorter segments produce a smaller number of samples. Figure 4-6 illustrates 
Oklahoma I-35 southbound between the Kansas and Texas borders, per segment, per 
day. Several factors are at play, one being that the shorter the length of the segment, 
the less the density of vehicles contained during any unit of time. Moreover, because 
probe vehicles traverse the length of a short segment faster than they do a long 
segment, a smaller number of samples is generated in the shorter segment. In some 
cases, it is possible for probe vehicles to pass through an entire segment without 
reporting any data, especially if sample time for instantaneous data being reported is 
longer than the time required for the vehicle to traverse the segment. 
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Figure 4-6 Trend Plot for Number of Epochs Recorded Versus Length of Segment. 

Consequently, the number of samples recorded per segment for any roadway is 
affected. Figure 4-7 illustrates the variability of average number of epochs recorded per 
day for Oklahoma I-35 southbound during January. Long segments could detect 
different TT across different parts of the segment, rendering average TT an inaccurate 
representation of actual TT across the entire segment. 

 

 

Figure 4-7 Average Number of Epochs Recorded Per Day Reported Per Segment. 
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4.2.6 Vehicle Performance and Roadway Geometry Effect 

In particular cases, freight truck-reported TTs were higher than passenger vehicle-
reported TT. Inversely, this means that freight trucks traveling those particular segments 
were moving slower on average than passenger vehicles. Freight truck-reported TT are 
prone to what is known as the Power-to-Weight ratio model, which adversely affects 
freight truck speed. Trucks with heavier cargo tend to slow their speed for precautionary 
measures. In addition, traversing steep or elevated roads could also cause freight trucks 
to reduce their speeds. In such cases, reported TT would model vehicle performance or 
roadway geometry characteristics rather than traffic conditions. 

4.2.7 Instantaneous Speed Reporting Increases Variability 

Given a small number of probes, average speed for all vehicles on the roadway 
might not be accurately represented by the average of probe samples. Moreover, 
because TT is derived from instantaneous speeds reported by GPS devices, captured 
TT values could project higher variability than might actually be occurring on the 
roadway. Because vehicles maintain an average speed when traversing a roadway 
during these periods, it is possible that vehicles might continually increase and/or 
decrease at speeds above and below the average. Reporting instantaneous speeds 
results in TT variation that might indicate variation that is different from that which is 
actually occurring on the roadway. Figure 4-8 illustrates the variation in speed for TMC 
45 for one entire, non-congested day. Clearly, there is significant variation between 
each consecutive epoch. 

 

Figure 4-8 TMC 45 Complete Day Epoch Scatter Plot for Non-Congested Day of 
January. 
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4.2.8 GPS inaccuracy 

In some cases, GPS coordinates of NHS roadways could match coordinates of 
non-NHS roadways. For example, bridges, tunnels, and parallel roadways cause NHS 
and non-NHS roadways to be located at the same geographical coordinate. 
Consequently, vehicles traveling on non-NHS roadways could be mistakenly accounted 
as those traveling on NHS roads and, as a result, distort collected TT measurements. 
For example, if vehicle directionality is not provided or if the accuracy of GPS 
positioning is not precise, a vehicle can easily be mistaken on an NHS roadway, even 
though it is actually traveling a non-NHS roadway that is near the NHS road. At an 
intersection, GPS location is associated with directionality, thus the error can be 
detected. Ultimately, the result of miscounted data is an increase in the variability of 
road TT. 

Figure 4-9 shows TMC 47 characterized by 0.5m of roadway crossing major 
arterial SE Grand Blvd. The satellite view depicted in Figure 4-10 shows that the NHS 
passes under the roadway. If directionality was not reported as a function of GPS 
measurement, vehicles on SE Grand Blvd. could be miscounted as traveling on I-35. 
Figure 4-10 also shows two parallel non-NHS roadways adjacent to I-35 southbound 
and northbound. If GPS positioning is not completely accurate, an erroneous count is 
possible as a result of vehicles traveling on either road. 

 

 

Figure 4-9 Map View of TMC 47 Crossroads with A Major Arterial. 
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Figure 4-10 Satellite View of TMC 47 Crossroads with A Major Arterial. 

 

4.3 NPMRDS Database Design 

The OU research group employed PostgreSQL to develop the database for 
housing NPMRDS data. The following considerations were taken into account for 
improving query execution time and responsiveness for multi-user access. 

1. Optimizing data type assignments: Utilize the smallest data type size possible for 
importing into the developed schema. Doing so had a significant impact on 
performance and improved query response time, especially for large scale 
queries of multiple data types. 

2. Generating Integer Keys: Map Segments Identifiers to Integer Keys to facilitate 
faster queries. 

3. Separating “Date” and “Time” entries: For “Datetime” fields, a separate “Time” 
and “Date” column were introduced to facilitate faster processing of queries 
without specific time requirements. This functionality leverages the smaller type 
size the word “Date” has over the word “Datetime.” 
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4. Improving queries: Write efficient and optimized queries to minimize response 
time (e.g., avoiding “select *” queries, using "select (required_columns_list)") for 
improved performance. 

5. Normalization: Optimize performance and prevent excessive repetition of data. 

4.4 NPMRDS Tools 

Based on database design, a series of tools were developed for users to access 
and utilize NPMRDS for aforementioned use cases. Web tools are available at URL 
https://speed.tulsa.ou.edu/. The “Login Form” depicted in Figure 4-11 greets new users 
visiting the website. 

 

Figure 4-11 NPMRDS Login Form. 

Upon signing in, access to NPMRDS v.1 (HERE) and NPMRDS v.2 (INRIX) is 
available, as shown in Figure 4-12. 

 

Figure 4-12 Option to Select HERE or INRIX Datasets. 
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4.4.1 Dashboard 

The dashboard tool, shown in Figure 4-13, is the first tool developed for NPMRDS 
that allows fast and easy access to dataset contents in a simple and intuitive manner. 
The tool enables end users to quickly search and download segment data for different 
queries through a wide variety of filtering tools, which are described below. 

 

Figure 4-13 NPMRDS Dashboard Tool. 

4.4.2 Graphical search 

Graphical segment search is enabled through the segment selection tool located 
on the right side of the webpage, as shown in Figure 4-14. By setting the year and 
quarter dropdown selectors to the intended search criteria, a user can quickly locate all 
segments in a given geographic region. 
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Figure 4-14 Segment Selection Tool. 

 The stop drawing selector (i.e., glove selector) disables all other selectors, 
allowing a user to freely move individual markers, points, or drawings on the map. 

 The location marker selector enables a user to mark points on the map for 
plotting and capturing segment data on a specific route (See Figure 4-15). 

 

Figure 4-15 Example of Marker Point Route Selection. 

 The shape selectors (i.e., box, circle, polygram) enables a user to draw 
custom shapes to cover a specific region (See Figure 4-16). 

 Notably, the graphical user interface (GUI) has auto-retrieval enabled for all 
selection and filtering criteria, meaning an implicit query returns segment information to 



81 

the GUI map and populates segment fields upon mouse-click-release of any of the 
aforementioned selectors (See Figure 4-17). 

 

Figure 4-16 Example of Rectangle Drawing Selection. 

 

Figure 4-17 Segment Fields Populated with Auto-retrieval. 

 

Figure 4-18 Date Range Filter. 

Segments selected through a graphical search can be further refined to fit a more 
detailed criteria. The date range filter shown in Figure 4-18 allows the user to specify 
data retrieval periods, including one long time period or a range of specific dates. This 
feature is enabled when a user selects more than one date range by clicking on the plus 
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sign located to the right side of the filter box. When activated, this filter will take 
precedence over the year and quarter selectors found in the segment selection tool. 

Additional filters include: 

• A Type filter for selecting highway, intra city, or all segments in NPMRDS.

• A PN filter for selecting positive or negative direction traffic flows.

• An Average filter for adjusting reported data retrieved according to a 15-minute or
1-hour interval.

• A Period filter for indicating custom time frames for data retrieval, including AM
(06:00 AM < 10:00 AM), Mid-Day (10:00 AM < 04:00 PM), PM ( 04:00 PM <
08:00 PM), or Weekend and Over Night periods. Moreover, specific time periods
can be combined to form a larger selection of specific times (e.g., selecting AM
and Mid-Day will report data from 06:00 AM < 04:00 PM).

• A Time filter for choosing specific times —other than the popular Period time
filters listed above— for a query search. It is important to note that the default
selection is all times (i.e., 288 epochs).

• A Data filter for selecting a specific type of data records, including TT or speed
records for passenger vehicles, freight trucks, or the combined all category, as
previously explained.

4.4.3 Division, county, highway and segment search 

Custom filters allow an ODOT user to instantly limit results to segments located in 
a specific division, county, highway, or segment. Subset groups can also be generated. 
For instance, a user might be interested in segments pertaining to Division 3, which 
are located only in Hughes, Johnston, and Lincoln counties and which belong only to 
I-44. Figure 4-19 and Figure 4-20 show query results. 

Figure 4-19 Custom Query Example Segment Result. 
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Figure 4-20 Custom Division, Country, Highway Query Example. 

4.4.4 Route Analysis 

The Route Analysis tool enables quick route and segment data analysis. Users 
can use this filter to obtain summary statistics for average TT and average speed over a 
specified time period. Employing the marker point selector, a user can leverage the 
graphical route search map to achieve analysis similar to that performed using the 
dashboard tool. Alternatively, segments can be entered individually in the segment form 
and filtered according to desired criteria, including direction, average duration, and time 
of interest. Individual or multiple highways can be selected for rapid analysis. Finally, 
the Route Analysis tool allows a user to set custom thresholds for identifying and 
coloring output results. 

Figure 4-21 through Figure 4-26 illustrate examples of analyzing I-35 for 31 days 
using the Route Analysis tool. Results in some cases are shown for August 2015, and 
others for August 2016. 
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Figure 4-21 Route Analysis (I-35 P Aug. 2016). 

 

Figure 4-22 Route Analysis (I-35 P Aug. 2015). 
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Figure 4-23 Average Speed (I-35 P Aug. 2016). 

 

Figure 4-24 Average Speed (I-35 P Aug. 2015). 
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Figure 4-25 Average Travel Time (I-35 P Aug. 2016). 

 

Figure 4-26 Average Travel Time (I-35 P Aug. 2015). 
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5. DATA CONDITIONING AND FUSION ALGORITHMS 
Despite the limitations and challenges discussed in Chapter 4, the NPMRDS 

dataset has important advantages, making it a valuable tool for crafting traffic 
performance measures. For example, because NPRMDS is a probe data set, TT can be 
easily collected from different geographic regions. Compared to traditional fixed location 
detectors, NPRMDS data has higher granularity without the confines of location or 
forced infrastructural physical constraints. Moreover, NPRMDS data is continuously 
generated, enabling DOT agencies to look beyond separate periodic surveys of unusual 
highway conditions. Capturing this information requires developing tools for extracting, 
manipulating, and processing NPRMDS data. A thorough understanding of domain 
characteristics is necessary for accurate and effective statistical processing. Limitations 
enumerated previously serve as guidelines for further anomaly detection and outlier 
removal procedures. The following processes were developed and published in [3] and 
[23]. For the sake of completeness for our readers, the highlights are included in this 
document. 

5.1 Data Outliers 

Congestion on segmented roadways is a function of both time and space. In 
space, a shock wave starts at the observed segment and then ripples to subsequent 
segments lagging behind the observed segment. The result is an increase in reported 
TT. With regard to time, the aforementioned shockwave manifests at the observed 
segment with increased TT for a recorded epoch, and then expands to later epochs of 
the same segment as congestion continues. At a certain point of time—given that the 
duration of congestion is long enough—spillover to epochs of segments behind the 
observed segment occurs and expands congestion in space. Consequently, congestion 
can first be detected in time in the observed segment, and then stretch in space to 
adjacent segments. Given the observed segment is short in length, time and space can 
expand nearly simultaneously, meaning epoch TT duration simultaneously increases in 
the observed and lagging segments when sampling time is long enough to allow 
congestion spillover to adjacent segments. In light of this understanding, we proceed to 
analyze outliers and formulate procedures for removing them from NPMRDS. 

5.2 Effect of High Spatial-temporal Variance 

As aforementioned, there is a high spatial-temporal variance in the number of 
epoch records in NPMRDS for NHS roadway segments. The chief cause for this 
variance is the fluctuating number of probe vehicles present on any segment at any 
moment in time. One particular case occurs when sample size is very low, which could 
result in outliers being non-representative of actual TT for vehicles traveling on the 
segment. These outliers can either be high or low valued points. Cases where sampled 
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data points exhibit extremely unrealistic values could also be caused by a system-
related error during data acquisition or conditioning. Detecting these outliers is possible 
by evaluating the dataset for data points that are too extreme to be realistic. In this 
work, average speed above 3 mean SDs from the speed limit (e.g., speed equal to 20.8 
mph) is considered an outlier. This equates to approximately 90 mph on a roadway with 
a speed limit of 70 mph. Reported speed represents averages. Thus, it is unrealistic for 
all cars traveling on the roadway to be averaging 90 mph or above. If such findings were 
to occur, results could be indicative of a very small sample size. Values for OK Highway 
I-35 southbound were first thresholded above 90 mph. Results were plotted per 
segment in ascending order for combined (i.e., passenger car and freight truck) TT, as 
shown in Figure 5-1. Figure 5-2 shows results for passenger car TT, and Figure 5-3 
shows the same for freight truck TT. 

 

Figure 5-1 Combined Vehicle Count Plot for Number of Epochs with Speeds  

Greater Than 90 Mph for OK I-35 Southbound Segments. 

Two phenomena can be observed: 

1. Shorter segments have smaller densities, which in turn affects sample size. 
Thus, a fast traveling vehicle might be the only sample present at a particular 
moment in time, making its speed not representative of average vehicle speed. 
Nevertheless, if the high speed is considered an accurate value of vehicle speed, 
one could surmise that vehicles can travel at free flow speed with no obstruction 
or congestion regardless of actual free flow speed. If the outlier were to remain in 
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the dataset, it would cause problems when performance metrics were calculated. 
For statistical analysis integrity, the outlier must be removed. 

2. Speed quantization error related to the variability of segment length.                           

For the sake of congestion analysis, we set all such points to the speed limit, as they 
are merely indicative that no congestion is present and that vehicles have the ability to 
travel at free flow.   

 

Figure 5-2 Passenger Vehicle Count Plot for Number of Epochs with Speeds  

Greater Than 90 Mph for OK I-35 Southbound Segments. 

 

Figure 5-3 Truck vehicle count plot for number of epochs with speeds  

greater than 90 mph for OK I-35 southbound segments. 
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5.3 Vehicle Specific Performance Data Points (Power-to-Weight) 

To detect outliers that might be caused by vehicle-specific characteristics on the 
road—as explained in the power-weight phenomena occurring in heavier vehicles, we 
build on the assumption that freight trucks recording slow speeds in correlation with 
passenger cars recording faster speeds is indicative that the latter represents a better 
approximation of true speed on the roadway. Slower freight truck speeds represent 
characteristics of a truck itself, or what is termed as vehicle specific performance data. 
Accordingly, a combined (i.e., passenger car and freight truck) speed data matrix is set 
to the speed of the fastest passenger car or freight truck, and the outlier is removed. 
Thus, detection is accomplished by correlating freight truck and passenger car vehicle 
speed for the same epoch and segment so that outliers are removed by replacing speed 
entries with the higher of the two speeds. 

 

Figure 5-4 Epoch Record Count for Difference of Max (Truck, Car) Matrix to 
Combined Matrix. 

 

Figure 5-5 Epoch Record Count for Difference Between Car and Truck Matrices. 
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Figure 5-4 shows a plot of the maximum speed matrix subtracted from NPMRDS 
combined all-vehicles matrix. Figure 5-5 shows a plot of the number of epochs when 
passenger car speeds were faster than freight truck speeds. Both figures are nearly 
identical, indicating that the majority of slower speeds were caused by freight trucks 
slowing for vehicle-specific reasons rather than for roadway conditions affecting all 
traffic. Figure 5-5 demonstrates that as segment length increases, the number of 
effected epochs averages down from maximum value increases, as well. This 
phenomenon was confirmed when examining the percentage of down-shifted epochs 
relative to the total number of epochs available per segment. Results indicate that an 
outlier would have a more profound effect on results due to the fact that fewer samples 
decrease the probability of correction when an outlier is part of the dataset.  

Figure 5-6 and Figure 5-7 show the mean and the standard deviation, 
respectively, of the speed difference between maximum and combined vehicle speeds. 
Average difference for most segments is approximately 5 mph, with standard deviation 
of approximately 2 to 3 mph. As segment length decreases, mean increases. Reported 
combined speeds in NPMRDS show on average a 5 mph reduction in speed compared 
to actual roadway speed, likely as a result of slower freight trucks. 

Figure 5-6 Mean Speed Difference Between Max Passenger and Combined 
Speeds. 
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Figure 5-7 Standard Deviation of Speed Difference Between Max Passenger and 
Combined Speeds. 

5.4 Roadway Geometry 

When roadway geometry affected TT, segments consistently reported slow TT 
compared with roadway speed limit. This phenomenon builds on the assumption that 
slower TT is a result of highway topography caused by the nature of the road itself, 
which forces vehicles to slow down. Given that roadway conditions might affect larger 
freight truck speeds far more than passenger car speeds, the power-weight ratio law 
would not consistently be cause for slowing down traffic. Accordingly, when slow freight 
trucks were differentiated based on passenger vehicles traveling at free flow speeds, 
changes were not made to the dataset. Instead, such cases were marked for post check 
in the graphical information system (GIS). These cases are of interest to DOT agencies, 
as they show locations where segments could possibly undergo optimization for freight 
truck TT. 

To investigate roadway segments, mean freight truck speeds were collectively 
monitored vis-a-vis speed limit during a one-month time period. Figure 5-8 shows 
results for OK I-35 southbound. Average freight truck speed in January 2015 was 
somewhat below the speed limit. Plots of the highest mean day speed per segment is 
shown for freight trucks and passenger cars in Figure 5-9 and Figure 5-10, respectively. 
For most segments, average freight truck speed was recorded below the roadway 
speed limit. Notably, some segments recorded average passenger car speed below the 
speed limit, as well. TMC 44 in particular stands out for having speeds significantly 
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below the speed limit throughout the month of January 2015. This result was consistent 
for both freight trucks and passenger cars. 

 

Figure 5-8 Average Epoch Truck Speed Per Segment for January 2015. 

 

Figure 5-9 Max Day Mean Epoch Truck Speed for January 2015. 
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Figure 5-10 Max Day Mean Epoch Car Speed for January 2015. 

Coordinates for TMC 44 were extracted and are shown on the Google map satellite 
image in Figure 5-11 and Figure 5-12. 

 

Figure 5-11 Segment 45 I-35 Intersect with The Centennial Expressway HW 235. 

TMC 44 begins at the intersection of OK I-35 and Centennial Expressway Highway 
235. The one lane on-ramp causes traffic slowdown for passenger cars and freight 
trucks alike, as evidenced in NPMRDS. 

 

 



95 

 

Figure 5-12 Close View of Segment 44 I-35 Intersect with The Centennial Express 
Way HW 235. 

5.5 GPS Inaccuracy (Non-NHS Roadway Data Points) 

Faulty GPS units or insufficient positioning accuracy result in inclusion of data 
points that are not part of NHS roadways. As mentioned earlier, data records could 
actually belong to roadways adjacent to the NHS. When sample size is large, outlier 
effect is minimal. When the sample size is small, however, outlier effect is possibly 
measurable. Recall that detection relies on the assumption that there is a speed 
difference between NHS roadways and adjacent non-NHS roadways. Thus, any record 
mistakenly reported due to GPS inaccuracy would be different from lagging and leading 
epochs for any segment under study. Another indicator occurs when passenger car 
speeds are slower than freight truck speeds by one or more SD in the same segment. 
By extracting all cases where trucks are faster than cars and removing all cases where 
cars are slower than trucks by less than the maximum SD (e.g.,15 mph for OK I-35 
southbound), all cases with noteworthy speed difference between passenger vehicles 
and freight trucks can be identified, as shown in Figure 5-13(a) and (b). Although such 
cases could be indicative of non-NHS roadways, differences could also be the result of 
a small sample size for passenger vehicles in which reported outliers were not 
representative of average speed per segment. Accordingly, threshold results were 
based on number of occurrences. Empirically, 20 occurrences were chosen, assuming 
the higher occurrence was indicative of GPS inaccuracies.   
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Figure 5-13 (a). Cars One Standard Deviation Less Than Trucks. (b). Threshold 
Result for Count >= 20. 

Coordinates of a random sample of segments were extracted, and Google maps 
were used for validation. Figure 5-14 shows that TMC 53 had the highest peak and was 
found to be adjacent to the OK I-35 southbound service road. Similarly, TMC 30, which 
proved to be the segment with the third highest error count, is positioned adjacent to the 
OK I-35 northbound service road (See Figure 5-15). 

 

Figure 5-14 Segment 53 Adjacent to S I-35 Service Road. 
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Figure 5-15 Segment 30 Adjacent To N-I35 Service Road. 

To identify and remove the remaining outliers, the following two procedures were 
performed: 

1. A new output speed matrix was generated and consisted of the maximum speed 
record reported for both passenger cars and freight trucks given epoch. The 
matrix alleviated non-NHS outliers when both car and truck speeds were 
available.  

2. Building on the notion of congestion described earlier in this chapter, a mask filter 
was constructed to scan the entire database to identify remaining outliers and 
then remove them.  

Figure 5-16 illustrates the mask used to scan the speed database. The mask filter 
identified three types of congestion: 1) New congestion evident in future epochs; 2) 
Present congestion evident in past epochs; and 3) Propagating congestion evident in 
adjacent segment epochs. Figure 5-17 provides a flow chart for the process used to 
remove outliers from the database. The process commences with thresholding a current 
segment epoch based on a modified congestion detection approach. Once an epoch 
has been identified as likely congestion, all gray marked entries in the mask are 
thoroughly inspected for likely congestion. If speed value of a grey entry is indicative of 
congestion, a flag is raised for the particular corresponding entry. If a check flag is 
detected at the end of the process, the current segment epoch is not altered. Given 
there is no flag, the current segment epoch is reset to the speed limit. A 20-minute 
detection range was chosen for NPMRDS, primarily because some missing epochs 
(i.e., epoch holes) were evident for consecutive records in particular segments in the 
dataset. 
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Figure 5-16 Mask Filter To Scan for Outliers. 

 

Figure 5-17 Flow Chart for Scanning Outliers Using Mask Filter. 
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5.6 Cleansed Dataset 

After applying the methods and processes described above, a cleansed dataset 
was generated. Table 5-1 shows a database example for TMC 97 with outlier speed 
reported. Epoch 1818 speed of 34.6485 mph is considerably lower than previous, 
consecutive, and adjacent recorded epoch speeds. As such, the value was considered 
an outlier and was reset, accordingly, to the speed limit for the segment. 

Table 5-1 Database Outlier for TMC 97 in Raw Database. 

 97 
1805 61.6913 
1806 62.1969 
1807 62.4529 
1808 62.711 
1809 77.8259 
1810 62.9712 
1811 64.034 
1812 65.9828 
1813 62.9712 
1814 62.4529 
1815 64.8549 
1816 67.1507 
1817 60.7042 
1818 34.6485 
1819 64.034 
1820 61.4415 
1821 65.6972 
1822 64.5789 
1823 63.2335 

 

Figure 5-18 and Figure 5-19 illustrate plots for segment 97 and segment 69 speed 
records, respectively, in January 2015. These were composed of both raw speed data 
obtained from the TT measurements without processing and the cleansed dataset 
following anomaly and outlier detection/removal procedures. 
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Figure 5-18 Comparison for TMC 97 Speed Records, Raw Vs. Cleansed Data, for 
January 2015. 

 

Figure 5-19 Comparison for TMC 69 Speed Records, Raw Vs. Cleansed Data, for 
January 2015. 
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6. TRAVEL TIME ANALYSIS ALGORITHMS

The FHWA published a Notice of Proposed Rulemaking (NPRM) in the Federal 
Register, which formed a series of related rules establishing a set of performance 
measures for state DOT agencies and MPOs to use, as required by the Moving Ahead 
for Progress in the 21st Century Act (MAP-21) and by the Fixing America’s Surface 
Transportation (FAST) Act. This following section details the use of NPMRDS to 
compute required performance measures, as defined in 23 CFR Part 490 of Federal 
Register, vol. 82, no. 11. 

6.1 Assessing Performance of the National Highway 

Two TT reliability measures were established in the related rules, which pertained to the 
third iteration of the FHWA defined performance measures [3]:  

1. Percent of reliable person-miles traveled on the Interstate (i.e., Interstate TTR
measure)

2. Percent of reliable person-miles traveled on the non-Interstate NHS (i.e., Non-
Interstate TTR measure).

The following definitions are described for completeness [3]: 

1. Level of TTR is a comparison—expressed as a ratio—of the 80th percentile TT of
a reporting segment with the “normal” (i.e., 50th percentile) TT of a reporting
segment that occurs throughout a full calendar year.

2. Normal TT (or 50th percentile TT) is the TT to traverse the full extent of a
reporting segment, which is greater than the time for 50 percent of the travel in a
calendar year for traversing the same reporting segment.

3. TT cumulative probability distribution is a representation of all TT for a road
segment during a defined reporting period (e.g., annually) presented in a
percentile ranked order, as provided in the TT data set. The normal (i.e., 50th
percentile) and 80th percentile TT used to compute TTR measures may be
identified by the TT cumulative probability distribution.

NPMRDS is used to calculate performance metrics defined by the FHWA. State 
DOTs are advised to refrain from replacing missing TT when data are not available in 
the TT data set (i.e., data not reported or reported as “0”/null). Average Annual Daily 
Traffic (AADT) will be used as reported to the Highway Performance Monitoring System 
(HPMS) in June of the reporting year.  Annual Volume (AV) for each segment is 
calculated as: 

   𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐕𝐕𝐕𝐕𝐀𝐀𝐀𝐀𝐕𝐕𝐞𝐞𝐬𝐬𝐞𝐞𝐬𝐬𝐞𝐞𝐕𝐕𝐀𝐀𝐬𝐬  =  𝐀𝐀𝐀𝐀𝐀𝐀𝐓𝐓𝐬𝐬𝐞𝐞𝐬𝐬𝐕𝐕𝐞𝐞𝐀𝐀𝐬𝐬  ×  𝟑𝟑𝟔𝟔𝟗𝟗 𝐝𝐝𝐀𝐀𝐝𝐝𝐬𝐬   Eq. 6-1  
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Average Occupancy Factor (AOF) is obtained from data published by the FHWA. 

6.1.1 Metric Calculation [3] 

Two performance metrics are required for the NHS Performance measures. 

1. Level of Travel Time Reliability (LOTTR) for TTR measures, which can be
calculated according to the following procedures:
• Conflation between NPMRDS and HPMS should be performed.
• Four new datasets should be created—according to time intervals

highlighted below—for each reporting segment in a ranked list of average
TT for all traffic (i.e., “all vehicles” in NPMRDS nomenclature), and then
reported to the nearest second for 15-minute periods.
o “AM Peak”: TT occurring between 6 and 10 a.m. for weekdays (Monday

thru Friday) from January 1st through December 31st of the same year.
o “Mid Day”: TT occurring between 10 a.m. and 4 p.m. for weekdays

(Monday thru Friday) from January 1st through December 31st of the
same year.

o “PM Peak”: TT occurring between 4 and 8 p.m. for weekdays (Monday
thru Friday) from January 1st through December 31st of the same year.

o “Weekend”: TT occurring between 6 a.m. and 8 p.m. for weekend days
(Saturday and Sunday) from January 1st through December 31st of the
same year.

2. Travel Time Cumulative Probability Distribution (TT-CDF) is computed for the
entire year per segment.

• Normal and 80th percentile TTs are determined from the TT-CDF.
• Four LOTTR metrics defined as the 80th percentile TT divided by the 50th

percentile TT and rounded to the nearest hundredth should be calculated
for each reporting segment—one for each data set created according to
the second bulleted step above.

6.1.2 Measure Calculation [3] 

The specified Interstate TTR measure should be computed to the nearest tenth of 
a percent, as follows: 

𝐏𝐏𝐞𝐞𝐏𝐏𝐏𝐏𝐞𝐞𝐀𝐀𝐬𝐬 𝐕𝐕𝐨𝐨 𝐬𝐬𝐭𝐭𝐞𝐞 𝐩𝐩𝐞𝐞𝐏𝐏𝐬𝐬𝐕𝐕𝐀𝐀−𝐕𝐕𝐦𝐦𝐀𝐀𝐞𝐞𝐬𝐬 𝐬𝐬𝐏𝐏𝐀𝐀𝐭𝐭𝐞𝐞𝐀𝐀𝐞𝐞𝐝𝐝 𝐕𝐕𝐀𝐀 𝐈𝐈𝐀𝐀𝐬𝐬𝐞𝐞𝐏𝐏𝐬𝐬𝐬𝐬𝐀𝐀𝐬𝐬𝐞𝐞 𝐬𝐬𝐭𝐭𝐀𝐀𝐬𝐬 𝐀𝐀𝐏𝐏𝐞𝐞 𝐏𝐏𝐞𝐞𝐀𝐀𝐦𝐦𝐀𝐀𝐫𝐫𝐀𝐀𝐞𝐞 = 𝒙𝒙𝒙𝒙𝒙𝒙 ×
∑ 𝐒𝐒𝐋𝐋𝐦𝐦×𝐀𝐀𝐕𝐕𝐦𝐦×𝐎𝐎𝐅𝐅𝐣𝐣𝐑𝐑
𝐦𝐦=𝒙𝒙

∑ 𝐒𝐒𝐋𝐋𝐦𝐦×𝐀𝐀𝐕𝐕𝐦𝐦×𝐎𝐎𝐅𝐅𝐣𝐣𝐓𝐓
𝐦𝐦=𝒙𝒙

Eq. 6-2 

where: 

R = total number of Interstate NHS reporting segments that exhibit LOTTR below 1.50 
during all four time periods identified above, 
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i = Interstate reporting segment, 

SLi = length, to the nearest thousandth of a mile, of reporting segment “i,” 

AVi = total annual traffic volume to the nearest single vehicle of reporting segment “i,” 

J = geographic area in which reporting segment “i” is located, where a unique 
occupancy factor has been determined, 

OFi = occupancy factor for vehicles travelling on the NHS, and 

T = total number of Interstate system reporting segments. 

The specified Non-Interstate TTR measure should be computed to the nearest tenth 
of a percent, as follows: 

𝐏𝐏𝐞𝐞𝐏𝐏𝐏𝐏𝐞𝐞𝐀𝐀𝐬𝐬 𝐕𝐕𝐨𝐨 𝐬𝐬𝐭𝐭𝐞𝐞 𝐩𝐩𝐞𝐞𝐏𝐏𝐬𝐬𝐕𝐕𝐀𝐀−𝐕𝐕𝐦𝐦𝐀𝐀𝐞𝐞𝐬𝐬 𝐬𝐬𝐏𝐏𝐀𝐀𝐭𝐭𝐞𝐞𝐀𝐀𝐞𝐞𝐝𝐝 𝐕𝐕𝐀𝐀 𝐍𝐍𝐕𝐕𝐀𝐀− 𝐈𝐈𝐀𝐀𝐬𝐬𝐞𝐞𝐏𝐏𝐬𝐬𝐬𝐬𝐀𝐀𝐬𝐬𝐞𝐞 𝐬𝐬𝐭𝐭𝐀𝐀𝐬𝐬 𝐀𝐀𝐏𝐏𝐞𝐞 𝐏𝐏𝐞𝐞𝐀𝐀𝐦𝐦𝐀𝐀𝐫𝐫𝐀𝐀𝐞𝐞 = 𝒙𝒙𝒙𝒙𝒙𝒙 ×
∑ 𝐒𝐒𝐋𝐋𝐦𝐦×𝐀𝐀𝐕𝐕𝐦𝐦×𝐎𝐎𝐅𝐅𝐣𝐣𝐑𝐑
𝐦𝐦=𝒙𝒙

∑ 𝐒𝐒𝐋𝐋𝐦𝐦×𝐀𝐀𝐕𝐕𝐦𝐦×𝐎𝐎𝐅𝐅𝐣𝐣𝐓𝐓
𝐦𝐦=𝒙𝒙

Eq. 6-3 

where: 

R = total number of non-Interstate NHS reporting segments that exhibit LOTTR below 
1.50 during all four time periods identified above, 
i = non-Interstate reporting segment, 
SLi = length, to the nearest thousandth of a mile, of reporting segment “i,” 
AVi = total annual traffic volume to the nearest single vehicle of reporting segment “i,” 
J = geographic area in which reporting segment “i” is located, where a unique occupancy 
factor has been determined, 
OFi = occupancy factor for vehicles travelling on the NHS, and 
T = total number of non-Interstate system reporting segments. 

6.1.3 Measure Results 

Figure 6-1 illustrates results obtained using NPMRDS and calculating measures 
for the state of Oklahoma in 2017. 

Figure 6-1 TTRM Results for Oklahoma. 
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6.2 Assessing Freight Movement on the Interstate System 

The Truck Travel Time Reliability (TTTR) Index measure was chosen as the 
reliability metric for assessing freight movement on the interstate system. NPMRDS 
was used to calculate performance metrics. Given that freight truck TTs were not 
available in the TT data set (i.e., data not reported or reported as “0”/null) for a given 
15-minute interval, missing TT with an observed TT that represented all traffic on the
roadway during the same 15-minute interval (i.e., “all vehicles” in NPMRDS
nomenclature) was replaced.

6.2.1 Metric Calculation [3] 

Truck Travel Time Reliability (TTTR) performance is required for NHS performance 
measures specified for freight movement assessment. To calculate this metric, 
five datasets were created—according to time intervals highlighted below—for each 
reporting segment in a ranked list of average TT for freight truck traffic (i.e., “Freight 
vehicles” in NPMRDS nomenclature) for 15-minute periods, to the nearest second. 

• “AM Peak”: TT occurring between 6 and 10 a.m. for weekdays (Monday thru
Friday) from January 1st through December 31st of the same year.

• “Mid Day”: TT occurring between 10 a.m. and 4 p.m. for weekdays (Monday thru
Friday) from January 1st through December 31st of the same year.

• “PM Peak”: TT occurring between 4 and 8 p.m. for weekdays (Monday thru Friday)
from January 1st through December 31st of the same year.

• “Weekend”: TT occurring between 6 a.m. and 8 p.m. for weekend days (Saturday
and Sunday) from January 1st through December 31st of the same year.

• “Overnight”: TT occurring overnight between 8 p.m. and 6 a.m. Sundays thru
Thursdays from January 1st through December 31st of the same year.

o Travel Time Cumulative Probability Distribution (TT-CDF) is computed for
the entire year per segment.

o Normal and 95th percentile TT are determined from the TT-CDF.
o Five TTTR metrics defined as 95th percentile TT divided by the 50th

percentile TT and rounded to the nearest hundredth should be calculated
for each reporting segment—one for each data set created in the first bullet-
step mentioned above.

6.2.2 Measure Calculation [3] 

Freight Reliability measure was computed to the nearest hundredth: 

∑ 𝑺𝑺𝑳𝑳𝑽𝑽×𝒎𝒎𝑽𝑽𝒙𝒙𝑻𝑻𝑻𝑻𝑻𝑻𝑹𝑹𝑽𝑽𝑻𝑻
𝑽𝑽=𝒙𝒙

∑ (𝑺𝑺𝑳𝑳𝑽𝑽)𝑻𝑻
𝑽𝑽=𝒙𝒙

         Eq.  6-4        

where: 
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SLi = length of reporting segment “i” rounded to the nearest thousandth of a mile,  
𝑇𝑇 = total number of interstate system reporting segments, 
𝑚𝑚𝑚𝑚𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖 = maximum TTTR of five time periods mentioned above to the nearest 
hundredth of Interstate system reporting segment “I,” and 
i = Interstate reporting segment. 

6.2.3 Measure Results 

Figure 6-1 illustrates results obtained for calculating the measure for the state of 
Oklahoma in 2017 using NPMRDS for both interstate and non-interstate segments. 

Figure 6-2 Results for Oklahoma. 

6.3 Assessing Congestion Mitigation and Air Quality Improvement Program—

Traffic Congestion 

The following definitions are described for completeness [3]. 

• Excessive delay indicates additional time spent in congested conditions as
defined by speed thresholds that are lower than a normal delay threshold.
(For the purposes of this rule, the speed threshold is 20 mph or 60 percent of
the posted speed limit, whichever is greater).

• Peak Period is defined as weekdays from 6 to 10 a.m. and either 3 to 7 p.m.
or 4 to 8 p.m., at the discretion of State DOTs and MPOs.

6.3.1 Measures 

Two performance measures assess traffic congestion for carrying out the CMAQ 
program (i.e., collectively referred to as the CMAQ Traffic Congestion measures) [3]:  

1. PHED: Annual hours of Peak Hour Excessive Delay (PHED) per capita.
2. Percent Non-SOV Travel: Non-Single Occupancy Vehicle (SOV) travel measure.



106 

For calculations reported in this paper, the research team focused only on the PHED 
measure. 

Using NPMRDS for calculating PHED per capita, hourly traffic volume data was 
developed for each reporting segment in the following way:  

1. An estimate of hourly traffic volumes for peak periods on each weekday of the
reporting year was performed using Annual Average Daily Traffic (AADT)
reported to the HPMS;

2. Hourly traffic volumes were assigned by hour to each reporting segment (e.g.,
between 8 and 8:59 a.m.);

3. Annual vehicle classification data was used for each reporting segment using
data;

4. ADT reported to HPMS was used to estimate annual percent share of traffic
volume for passenger cars, buses, and freight trucks;

where 

• Buses = value in HPMS data item “AADT_Single_Unit”;
• Freight trucks = value in HPMS data item “AADT_Combination”; and
• Passenger cars = subtract values for buses and trucks from the value in HPMS

data item “AADT.”

Using data reported to HPMS, data values were separated to represent the
appropriate travel direction of the reporting segment. 

Annual Average Vehicle Occupancy (AVO) factors for passenger cars, buses, 
and freight trucks in applicable urbanized areas were estimated from annual vehicle 
occupancy factors provided by FHWA. 

6.3.2 Metric Calculation 

The PHED performance metric is required to calculate Total Peak Hour 
Excessive Delay (i.e., person-hours, referred to as the PHED metric), calculated using 
the following data. 

• TT of all traffic (i.e., “all vehicles” in NPMRDS nomenclature) during each 15-
minute interval for all applicable reporting segments in the TT data set during peak
periods from January 1st through December 31st of the same year,

• length of each applicable reporting segment,
• Hourly volume estimation for all days and for all reporting segments in which

excessive delay is measured,
• Annual vehicle classification data for all days and for all reporting segments when

excessive delay is measured, and
• AVO factors for passenger cars, buses, and freight trucks for all days and for all

reporting segments where excessive delay is measured.
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Excessive delay threshold TT for all applicable TT segments is calculated, as 
follows [3]:  

Eq.6-5 
where 

• 𝐸𝐸𝑥𝑥𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑣𝑣𝑆𝑆 𝐷𝐷𝑆𝑆𝑙𝑙𝑚𝑚𝐷𝐷 𝑇𝑇ℎ𝑟𝑟𝑆𝑆𝐸𝐸ℎ𝑜𝑜𝑙𝑙𝑜𝑜 𝑇𝑇𝑟𝑟𝑚𝑚𝑣𝑣𝑆𝑆𝑙𝑙 𝑇𝑇𝑆𝑆𝑚𝑚𝑆𝑆𝑠𝑠 = the time of travel—to the nearest
whole second—to traverse the TT segment at which any longer measured TT
would result in excessive delay for the TT segment,

• 𝑇𝑇𝑟𝑟𝑚𝑚𝑣𝑣𝑆𝑆𝑙𝑙 𝑇𝑇𝑆𝑆𝑚𝑚𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆𝑛𝑛𝑆𝑆 𝐿𝐿𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑠𝑠 = total length of TT segments to the nearest
thousandth of a mile for TT reporting segment, and

• 𝑇𝑇ℎ𝑟𝑟𝑆𝑆𝐸𝐸ℎ𝑜𝑜𝑙𝑙𝑜𝑜 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑜𝑜𝑠𝑠  = the speed of travel at which any slower measured speeds
would result in excessive delay for TT reporting. For example, the speed threshold
is 20 mph or 60 percent of the posted speed limit TT reporting segments,
whichever is greater.

Excessive delay is determined for each 15-minute bin reporting segment for every 
hour and every day in a calendar year, as follows.  

TT segment delay (RSD) is calculated to the nearest whole second, as follows [3]: 

   𝑹𝑹𝑺𝑺𝑫𝑫𝑫𝑫,𝒃𝒃 = 𝑻𝑻𝑷𝑷𝑽𝑽𝒗𝒗𝑷𝑷𝒗𝒗 𝒕𝒕𝑽𝑽𝒎𝒎𝑷𝑷 (𝑫𝑫)𝒃𝒃 − 𝑬𝑬𝒙𝒙𝑷𝑷𝑷𝑷𝑫𝑫𝑫𝑫𝑽𝑽𝒗𝒗𝑷𝑷 𝑫𝑫𝑷𝑷𝒗𝒗𝑽𝑽𝒙𝒙 𝑻𝑻𝒗𝒗𝑷𝑷𝑷𝑷𝑫𝑫𝒗𝒗𝒐𝒐𝒗𝒗𝒅𝒅 𝑻𝑻𝑷𝑷𝑽𝑽𝒗𝒗𝑷𝑷𝒗𝒗 𝑻𝑻𝑽𝑽𝒎𝒎𝑷𝑷𝑫𝑫     Eq.  6-6 

and 

   𝑹𝑹𝑺𝑺𝑫𝑫𝑫𝑫,𝒃𝒃 ≤ 𝟗𝟗𝒙𝒙𝒙𝒙 𝑫𝑫𝑷𝑷𝑷𝑷𝒐𝒐𝑷𝑷𝒅𝒅𝑫𝑫         Eq.  6-7 

where, 

• 𝑅𝑅𝑆𝑆𝐷𝐷𝑠𝑠,𝑏𝑏 = TT segment delay calculated to the nearest whole second for a 15-minute
bin “b” of TT reporting segment “s” for a day in a calendar year; 𝑅𝑅𝑆𝑆𝐷𝐷𝑠𝑠,𝑏𝑏 not to exceed
900 seconds,

• 𝑇𝑇𝑟𝑟𝑚𝑚𝑣𝑣𝑆𝑆𝑙𝑙 𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆(𝐸𝐸)𝑏𝑏 = measured TT to the nearest second for a 15-minute time bin (b)
recorded for TT reporting segment s,

• b = 15-minute bin of a TT reporting segment “s,” and
• s = TT reporting segment.

Excessive delay (i.e., the additional amount of time to traverse a TT segment in a
15-minute bin compared to the amount of time needed to traverse the TT segment when
traveling at the excessive delay travel speed threshold) was calculated to the nearest
thousandths of an hour.
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 Eq.  6-8 

Hourly traffic volumes for calculating the PHED metric for each reporting 
segment were as follows:  

where, 

• 𝐴𝐴𝐴𝐴𝐴𝐴 = Average Vehicle Occupancy,
• 𝐸𝐸 = TT reporting segment,
• 𝑜𝑜 = a day of the reporting year,
• 𝑇𝑇𝐷𝐷 = total number of days in the reporting year,
• ℎ = single hour interval of the day where the first hour interval is 12 a.m. to 12:59

a.m.,
• 𝑇𝑇𝑇𝑇 = total number of hour intervals in day “h,”
• 𝑏𝑏 = 15-minute bin for hour interval “h,”
• 𝑇𝑇𝑇𝑇 = total number of 15-minute bins in which TT are recorded in the travel time

data set for hour interval “h,” and
• 𝑜𝑜 = a day of the reporting year.

        𝑨𝑨𝑽𝑽𝑨𝑨 =  (𝑷𝑷𝑪𝑪  ×  𝑨𝑨𝑽𝑽𝑨𝑨𝑪𝑪) + (𝑷𝑷𝑩𝑩  ×  𝑨𝑨𝑽𝑽𝑨𝑨𝑩𝑩) + (𝑷𝑷𝑻𝑻  ×  𝑨𝑨𝑽𝑽𝑨𝑨𝑻𝑻)       Eq.  6-10 

where, 

• 𝑃𝑃𝐶𝐶 = percent of cars as a share of total AADT on the segment,
• 𝑃𝑃𝑇𝑇 = percent of buses as a share of total AADT on the segment,
• 𝑃𝑃𝑇𝑇 = percent of trucks as a share of total AADT on the segment,
• 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶  = average vehicle occupancy of passenger cars,
• 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵 = average vehicle occupancy of buses, and
• 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 = average vehicle occupancy of freight trucks.

6.3.3 Measure Calculation 

To arrive at PHED (i.e., Annual Hours of Peak Hour Excessive Delay Per 
Capita), performance measure for CMAQ traffic congestion was computed to the 
nearest tenth by summing PHED metrics of all reporting segments in each of the 
urbanized area, and then dividing the result by the population of the urbanized area: 



109 

𝑨𝑨𝑷𝑷𝑷𝑷𝑺𝑺𝑽𝑽𝒗𝒗 𝑻𝑻𝒐𝒐𝑺𝑺𝑷𝑷𝑫𝑫 𝒐𝒐𝒐𝒐 𝑷𝑷𝑷𝑷𝑽𝑽𝒌𝒌 𝑻𝑻𝒐𝒐𝑺𝑺𝑷𝑷 𝑬𝑬𝒙𝒙𝑷𝑷𝑷𝑷𝑫𝑫𝑫𝑫𝑽𝑽𝒗𝒗𝑷𝑷 𝑫𝑫𝑷𝑷𝒗𝒗𝑽𝑽𝒙𝒙 𝒑𝒑𝑷𝑷𝑷𝑷 𝑪𝑪𝑽𝑽𝒑𝒑𝑽𝑽𝒕𝒕𝑽𝑽 = ∑ 𝑻𝑻𝒐𝒐𝒕𝒕𝑽𝑽𝒗𝒗 𝑬𝑬𝒙𝒙𝑷𝑷𝑷𝑷𝑫𝑫𝑫𝑫𝑽𝑽𝒗𝒗𝑷𝑷 𝑫𝑫𝑷𝑷𝒗𝒗𝑽𝑽𝒙𝒙𝑫𝑫𝑻𝑻
𝒃𝒃=𝒙𝒙

𝑻𝑻𝒐𝒐𝒕𝒕𝑽𝑽𝒗𝒗 𝑷𝑷𝒐𝒐𝒑𝒑𝑺𝑺𝒗𝒗𝑽𝑽𝒕𝒕𝑽𝑽𝒐𝒐𝑷𝑷
 

Eq.6-11 

6.3.4 Measure Results 

Figure 6-3 illustrates results from calculating PHED for the state of Oklahoma in 
2017 using NPMRDS. Oklahoma City serves as the largest contributor to excessive 
delay. 

Figure 6-3 PHED Result for Oklahoma. 
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7. PROBABILISTIC MODELING

7.1 Secondary Incident Detection 

Highways are the most frequently used means of transportation and the leading 
source of travel mishaps. Crashes or incidents on highways—both primary and 
secondary—constrain highway capacity, threaten passenger safety, and increase TT, 
resulting in delays and wasted traffic management resources. This report aimed to 
expand field knowledge about the detection of secondary incidents by analyzing primary 
incidents and their spatiotemporal influence on traffic. 

Analytical and statistical methods, including logit, probit, and artificial neural 
network (ANN) models, were designed for automating incident classification by 
processing vehicle count, weather conditions, and traffic flow, among other parameters. 
The logit and probit model showed similar performance with an accuracy of 67% in the 
former and 66% in the latter. Identical precision was 48%. The contribution of each 
independent feature was gauged using odds ratio. ANN out-performed the logit and 
probit model. A simple three-layer ANN was used for incident classification, reporting 
91% accuracy and 89% precision. ANN’s superior performance can be attributed to its 
ability to learn complex relations. 

A novel connection-weight algorithm was used to determine the importance of 
various features on the dependent variable, as well as how each factor affected the 
model. Results were encapsulated in a GUI for facilitating data collection and analysis.  

7.2  Data Acquisition/Preparation for Analysis 

Data records of various state highways in Oklahoma were obtained from ODOT 
databases. Two divisions—Traffic Engineering Division, for their Accident database, and 
Intelligent Transportation System (ITS) Division, for their Incident database—were 
instrumental in providing the data. The Accident database was composed of all incidents 
occurring in the state of Oklahoma and was accessible via an online portal. Individual or 
query-related records functionality allowed easy access to incident records reported by 
county or city. The present study was based on 65,000 incident records from 2014 in the 
city of Tulsa, OK.  

The Incident database was composed of 3,026 records collected between 2014 
and 2015 from a variety of highways throughout the state and included incident 
duration, number of lanes closed, and directionality of lane closure. Although the 
Accident database is more comprehensive than the Incident database, a combination of 
databases provided a comprehensive view of incidents that occurred throughout the 
state of Oklahoma. 
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7.3 Defining Spatiotemporal Boundaries of Primary Incidents 

The spatiotemporal area of influence of primary incidents was defined using the 
following parameters: 

• Queuing: ways in which vehicle drivers respond to highway incidents and how
vehicles form queues on highways following incidents

• Lane blockage and its effects: primary incident impact on highway capacity
• Time distribution of traffic flow: effect of traffic intensity at different times during a

day and how intensity affects vehicle movement on roads
• Lane changing behavior: driver behaviors as the travel from one lane to another
• Spatiotemporal effect: distance and time boundaries with respect to a primary

incident

Such parameters can be used to generate average vehicle wait time and queue
length for the highway network system. A definition of each parameter is defined in sub-
steps in Figure 7-1. 

Figure 7-1 Process Definition of Spatiotemporal Area of Influence. 

7.4 Queuing 

Capturing vehicle movement on the roadway is important for increasing algorithm 
effectiveness and can be accomplished by simulating the inter-arrival times of vehicles in 
a real-world situation. A memoryless queueing model was leveraged to capture vehicle 
movement on roadways/highways. In this study, vehicle arrival rate on highways 
resembled a memoryless model (M/M/n), wherein the number of servers equals the 
number of highway lanes and each lane is an independent queue. The memoryless model 
of queuing used in the algorithm defines a memoryless interarrival rate for vehicles in the 
system and a memoryless servicing time. This method of queuing was achieved using 
the CIW library in Python.  

Highway vehicles move in a pattern similar to a truncated Poisson process. At any 
given point in the day, arrival rate of subsequent vehicles is not dependent on the arrival 
rate of the present vehicles. However, inter-arrival time is generally bound by an upper 
and lower limit, hence the name truncated Poisson. The plot in Figure 7-2 shows the 
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distribution of vehicle inter-arrival times used in simulations. These ranged from 4 to 5 
seconds for incoming vehicles. This feature aided in simulating a real-world vehicle arrival 
pattern. 

Figure 7-2 Inter-Arrival Times Vs. Number of Vehicles. 

7.5 Defining Lane Blockage During Primary Incidents 

The Accident database was unable to provide information concerning the effect of 
a primary incident on highway capacity or lane blockages. The Incident database, 
however, could do so, although data was limited to 623 instances in Tulsa County. 
Information garnered from the Incident database lacked the comprehensiveness of that 
in the Accident database. As such, it was necessary to fetch time and location 
parameters from both databases to identify a total of 42 incidents that were common in 
both sets.  

To establish a correlation between various features specific by ODOT (e.g., 
number of vehicles involved in an incident, number of highway lanes, number of lanes 
blocked, and extent of vehicle damage), an association analysis that considered rear-
end and side-swipe incidents was used. Table 7-1 was formed using rules provided by 
association analysis, which were then used with the algorithm to understand the number 
of lanes potentially blocked in the event of a primary incident. 

Table 7-1 Probabilities of Number of Lanes Closed. 

No. vehicles lanes_closed_1 lanes_closed_2 lanes_closed_3 lanes_closed_4 
1 0.98 0.02 0 0 
2 0.45 0.54 0.01 0 
3 0.31 0.49 0.19 0.01 

4 or more 0.01 0.6 0.3 0.09 
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7.6 Understanding Traffic Intensity, Distribution of Traffic Over Time 

Traffic intensity refers to the number of vehicles travelling a highway at a given 
time of day. Traffic intensity is described in Eq. 7-1, and the inter-arrival rate is 
described in Eq. 7-2. Measuring traffic intensity at different times of the day, as seen in 
Figure 7-3, aids the algorithm in determining inter-arrival rate limits for vehicles at given 
times of the day. The effect of traffic intensity on highway capacity indicates that when 
traffic intensity is high, inter-arrival times decrease. Hence, an accident with merely low 
damage extent could potentially result in long queue times, effectively increasing the 
time spent by a vehicle on the highway network system or a vehicle waiting to be 
serviced. During peak night hours, inter-arrival time for vehicles increases, resulting in 
shorter queues and reduced waiting times. Results in this study were obtained utilizing 
data from a project conducted by the Washington State Transportation Center in which 
an urban area was considered for observing and recording traffic distribution for 24 
hours during a weekday. 

Figure 7-3 Traffic Intensity at Different Times of The Day. 

𝑻𝑻𝑷𝑷𝑽𝑽𝒐𝒐𝒐𝒐𝑽𝑽𝑷𝑷 𝒑𝒑𝑷𝑷𝑷𝑷 𝒗𝒗𝒐𝒐𝑺𝑺𝑷𝑷 = 𝑨𝑨𝒗𝒗𝑷𝑷𝑷𝑷𝑽𝑽𝒐𝒐𝑷𝑷 𝒕𝒕𝑷𝑷𝑽𝑽𝒐𝒐𝒐𝒐𝑽𝑽𝑷𝑷 (𝟐𝟐𝟒𝟒 𝒗𝒗𝒐𝒐𝑺𝑺𝑷𝑷) ∗ 𝑻𝑻𝑷𝑷𝑽𝑽𝒐𝒐𝒐𝒐𝑽𝑽𝑷𝑷 𝑽𝑽𝑷𝑷𝒕𝒕𝑷𝑷𝑷𝑷𝑫𝑫𝑽𝑽𝒕𝒕𝒙𝒙        Eq. 7-1 

𝑩𝑩𝑷𝑷𝒕𝒕𝑷𝑷𝑷𝑷 − 𝑽𝑽𝑷𝑷𝑷𝑷𝑽𝑽𝒗𝒗𝑽𝑽𝒗𝒗 𝑷𝑷𝑽𝑽𝒕𝒕𝑷𝑷 = 𝟑𝟑𝟔𝟔𝒙𝒙𝒙𝒙
𝑻𝑻𝑷𝑷𝑽𝑽𝒐𝒐𝒐𝒐𝑽𝑽𝑷𝑷 𝒑𝒑𝑷𝑷𝑷𝑷 𝒗𝒗𝒐𝒐𝑺𝑺𝑷𝑷

𝑫𝑫𝑷𝑷𝑷𝑷𝒐𝒐𝑷𝑷𝒅𝒅𝑫𝑫 𝑷𝑷𝑽𝑽𝑷𝑷⁄     Eq.  7-2 

7.7 Changing-lanes Behavior of Vehicles during an Incident 

Figure 7-4 shows vehicle driving patterns during an incident. To simulate this 
factor in the algorithm, a custom arrival node was created in the CIW library [22] written 
in Python wherein vehicles are randomly pushed from the affected lane to an adjacent 
lane, thus effectively keeping traffic in motion. A threshold of a single car was set for 
research purposes. For example, once an incident and the blocked lane has more than 
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one car in queue, the systems begin to move incoming cars from the blocked lane(s) to 
lanes still in service. 

 

Figure 7-4 Movement of Cars in Case of an Incident. 

Pseudocode in Figure 7-5 shows that if an incident occurs in a two-lane highway 
and lane 1 is blocked, incoming vehicles in lane 1 are directed to move to lane 2 in an 
effort to keep traffic moving. 

  

    # lanes = 2 and blocked lanes = 1 
    class CustomArrivalNode21(ciw.ArrivalNode): 
        def send_individual(self, next_node, next_individual): 
            self.number_accepted_individuals += 1 
            if ((Q.nodes[1].number_of_individuals) <= -1): 
                Q.nodes[1].accept(next_individual, self.next_event_date) 
            else: 
                self.simulation.nodes[2].accept(next_individual, 
self.next_event_date) 

Figure 7-5 Pseudocode for Lane Change Behavior. 

The act of lane change can be fed into the algorithm with the aforementioned 
parameters to define the area of the spatiotemporal boundaries of a primary incident. 

7.8 Spatial and Temporal Influence of the Incident 

An algorithm was created using the process highlighted in Figure 7-6. The 
culmination of all factors provides the spatiotemporal influence of the primary incident. 
In Figure 7-6, incident ‘300224431’ was considered the primary incident. The shaded 
area represents the spatiotemporal area-of-influence of the primary incident, and other 
incidents in the shaded area are considered secondary incidents. The primary incident 
occurring on OK I-44 was a rear-end car crash involving two vehicles, and the extent of 
damage was graded a 3. The incident resulted in one out-of-service lane for 
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approximately 70 minutes, which caused vehicle service time to increase. A queue 
build-up increased the time vehicles spent on the highway network. 

 

Figure 7-6 Spatiotemporal Influence of a Primary Incident. 

7.9 Integrating Google Maps to Detect Direction of Travel and Highway Sections 

Although this type of graphical representation provides adequate information about 
the spatiotemporal effect of an incident, it does not depict the direction of vehicle travel 
and the affected highway sections. This problem was solved using the Gm-Plot library in 
Python in conjunction with Google Maps API. Latitude and longitude coordinates 
contained in the Accident database were utilized for plotting the incident location on a 
Google Map (See Figure 7-7). Coordinates were calculated up to the fifth decimal place, 
making them accurate up to 1.1 meter. Using this method for studying the location of 
incidents provides insight about the highway section affected by the incident, as well as 
the direction of vehicle flow. 

 

 
Figure 7-7 Primary and Secondary Incidents Plotted in Google Maps (Primary-

Blue, Secondary-Red). 
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7.10 Creating Analytical Models for Prediction of Secondary Incidents 

An algorithm was designed using statistical and neural network models for 
processing incident databases and classifying them as primary or secondary. This type 
of automated classification aids in assessing a large number of incidents and 
determining which factors can be used to identify such incidents. 

7.10.1 Choosing Features for Analytical and Artificial Neural Network Models 

The Accident database provided by the ODOT Traffic Engineering Division was 
used to create statistical and neural network models. The dataset housed therein was 
characterized by an array of features related to different aspects of an incident. Figure 
7-8 shows the correlation matrix for various features in the dataset. Features selected 
for analytical and artificial neural network modelling are listed in Table 7-2. 

Only two major types of crashes, namely rear-end collisions” and “side-swipe 
collisions,” were considered for statistical and neural network models. After data 
processing, incident classification based on the factors listed in Table 7-2 became 
binary. To address this, logit and probit statistical models were selected to provide a 
starting point for classification and to serve as a benchmark for the ANN modeling. 

 

Figure 7-8 Correlation Matrix for Various Features in the Dataset. 
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Table 7-2 Features Selected for Analytical and Artificial Neural Network Modeling. 

Collision Time Rush Hour 
Non-rush hour 

Number of vehicles involved The number of vehicles involved in the 
incident 

Commercial vehicles involved Indicates the presence of commercial 
vehicles involved in the incident 

Number of lanes Indicates the number of lanes on one side 
of the highway 

Damage extent to the vehicle 

01 - None 
02 - Minor 
03 - Functional 
04 - Disabling 
09 - Unknown 

Average traffic Indicates the average number of vehicles 
present on a highway in a day 

Weather conditions 

01 - Clear 
02 - Fog/Smog/Smoke 
03 - Cloudy 
04 - Rain 
05 - Snow 
06 - Sleet/Hail (Freezing Rain/Drizzle) 
07 - Severe Crosswind 
08 - Blowing Snow 
09 - Blowing Sand, Soil, Dirt 
10 - Other 

Light Conditions 

01 - Daylight 
02 - Dark / Unlighted 
03 - Dark / Lighted 
04 - Dawn 
05 - Dusk 
06 - Dark / Unknown Lighting 
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7.10.2  Creating Logit Model for Secondary Incident Detection 

The logit model is a statistical model employing a logistic link function to bound 
output between 0 and 1. The logistic model was created in Python leveraging the 
Statsmodels library. Data was divided into training and testing datasets with a split of 
70-30, respectively. The model was then trained with the former dataset. Results 
derived from the logit model are detailed in Table 7-3. The ROC for logit model is shown 
in Figure 7-9. 

Table 7-3 Results and Coefficients from the Logit Model. 

  coef OddsRatio P>|z| 
Intercept -1.3411 0.1913744 0.322 

C(Weather_Conditions)[T.3L] 0.6222 2.111998 0.26 
C(Weather_Conditions)[T.4L] 0.9132 3.286169 0.027 
C(Weather_Conditions)[T.6L] 1.1729 2.811445 0.044 
C(Weather_Conditions)[T.8L] 20.8792 4.35728E+12 1 

C(Light_Conditions)[T.2L] -0.5897 2.995745 0.564 
C(Light_Conditions)[T.3L] 0.1713 1.259635 0.631 
C(Light_Conditions)[T.5L] 1.9051 15.69422 0.014 

Collision_Time 0.0129 1.017518 0.796 
Vehicles 0.4181 1.73322 0.017 

Commercial_Vehicles 0.7481 1.634679 0.092 
Number_Lanes -0.4668 0.5377444 0.039 

Damage_Extent 0.0632 0.9575034 0.697 

 

 

Figure 7-9 ROC for the Logit Model. 
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7.10.3  Creating Probit Model for Secondary Incident Detection 

The probit model uses the cumulative distribution of the standard normal 
distribution to bound output between 0 and 1. Like the logit model, p-values in the probit 
model provide insight to the uniqueness of the data in the dataset. Table 7-4 shows 
results obtained after executing the probit model using the training dataset. 

Table 7-4 Coefficients and Results from Probit Model. 
 

coef OddsRatio P>|z| 
Intercept -0.7949 0.451621 0.332 

C(Weather_Conditions)[T.3L] 0.3369 1.400595 0.31 
C(Weather_Conditions)[T.4L] 0.4982 1.645807 0.037 
C(Weather_Conditions)[T.6L] 0.6641 1.942813 0.057 
C(Weather_Conditions)[T.8L] 7.5359 1.345443 1 

C(Light_Conditions)[T.2L] -0.3857 0.679976 0.529 
C(Light_Conditions)[T.3L] 0.1041 1.109763 0.635 
C(Light_Conditions)[T.5L] 0.9966 2.709062 0.013 

Collision_Time 0.0102 1.010238 0.735 
Vehicles 0.2492 1.282982 0.018 

Commercial_Vehicles 0.4607 1.58515 0.094 
Number_Lanes -0.2821 0.754233 0.036 
Damage_Extent 0.0327 1.033282 0.729 
Average_Traffic 4.58E-06 1.000005 0.177 

 

The probit model performed with 66% accuracy and 48% precision. The area under 
the ROC curve for the probit model, which is shown in Figure 7-10, was less than that of 
the logit model; this demonstrates a decrease in accuracy. Notably, the probit model 
performed with similar precision to the logit model. 

 

Figure 7-10 ROC for Probit Model. 
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7.11 Creating Neural Network Models for Secondary Incident Detection 

ANNs have proven acceptable for both accuracy and precision in classification 
solutions and have also been used as classifier for many problems. Figure 7-11 
illustrates a simple ANN architecture. In this experiment, the ANN has 13 input nodes, 
seven hidden nodes, and a single output node. The ANN model uses the same data as 
the statistical model, with a 70-30 divide between training and testing datasets. 

 

Figure 7-11 Simple Artificial Neural Network. 

 

Figure 7-12 Loss vs. Epoch Plot. 

Neural network training was performed for 110 epochs. Figure 7-12 shows the loss 
vs. epoch plot. Accuracy vs. epoch plot, which is shown in Figure 7-13, commences 
forming a flat tail when training approaches 110 epochs. Figure 7-14 illustrates the point 
at which training should cease.  

An overview of accuracy and precision scores for the various tested models is 
shown in Table 7-5. ANN clearly outperformed statistical models for both accuracy and 
precision. 
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Figure 7-13 Accuracy vs. Epoch Plot. 

 

Figure 7-14 ROC for Neural Network. 

 

Table 7-5 Comparative Analysis of Different Models. 

 Logit Probit ANN 
AUC 0.669981188 0.665143779 0.91104182 

Precision 0.48 0.48 0.890909091 
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7.11.1 Determining Feature Importance Using Connection Weight Algorithm 

The connection weight algorithm is the preferred method for accessing variable 
importance in simple feed-forward neural networks. Characteristics of such neural 
networks can be described as having an input layer and a hidden layer, as well as being 
fully connected and trained when using the back-propagation algorithm. For this 
research, the said method was used to gauge feature importance. The effect of variable 
influence on secondary incident classification was calculated and can be seen in Figure 
7-15. Legends for weather and light conditions are shown in Table 7-6 and Table 7-7, 
respectively.  Results from executing the connection weight algorithm demonstrated that 
features like collision time, number of vehicles, and presence of commercial vehicles 
heavily contributed to the model for accurately detecting secondary incidents. Similarly, 
weather related conditions (e.g., normal or light fog) did not affect the system as much 
as snow or icy conditions.

Figure 7-15 Independent Variable Influence for Secondary Incident Detection.  

Table 7-6 Legend for Weather Conditions. 

W_1 Clear 
W_2 Fog/Smog 
W_3 Cloudy 
W_4 Rainy 
W_5 Snow 
W_6 Sleet/Hail 

W_7 Severe 
Crosswind 

W_8 Blowing Snow 
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Table 7-7 Legend for Light Conditions.    

 

 
 
 
 
 

                L_1 Daylight 
                L_2 Dark-Not Lighted 
                L_3 Dark-Lighted 
                L_4 Dawn 
                L_5 Dusk 

7.12 Identification using Bayesian Probability 

Various non-recurrent conditions characterize the manner in which vehicle speed 
is affected on road segments and routes. These conditions correspond to a variety of 
characteristic models, the impact of which is clearly visible and identifiable on the 
baseline distribution. Thus, distinguishable statistical models can be used to reveal 
assorted information for each condition. By combining distribution models with Bayesian 
probability, an approach can be determined for identifying the underlining condition 
occurring in both offline and real-time speed analysis. The work reported herein 
proposes a Bayesian engine for congestion identification. The engine utilizes statistical 
models derived from observed data records per condition, and then estimates a 
posterior credibility for each hypothesis. The model was developed to identify three 
situations: incident (e.g., cash and collision), weather (e.g., snow) and free-flow traffic. 
Histogram distributions of speeds are used to create distribution density models from TT 
data. 

 

Figure 7-16 Segment 64 on I-35. 
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7.12.1 Implementation of Bayesian Congestion Identification 

Models pertaining to the three distinct conditions mentioned above, namely 
incident, weather, and free-flow, were constructed. Using NPMRDS, a particular 
segment on OK I-35 was chosen to derive distribution models. This information was 
subsequently used to evaluate the proposed Bayesian identification approach on 
additional segments for three non-recurrent conditions events. TMC 64 west of Norman 
on OK I-35 (See Figure 7-16) is located proximate to a dedicated weather sensor known 
to gather accurate historical weather data. A historic incident (crash) event occurred on 
TMC 64 on March 13, 2015. On that same segment, a snow fall event had occurred on 
March 4. Free-flow traffic was observed on March 2. Figure 7-17 illustrates the monthly 
epoch plot for TMC 64 during March 2015. 

 

Figure 7-17 Epoch Speed Plot for TMC 64 During the Month of March 2015. 

Snow travel and free-flow travel cases were characterized by mean and SD 
according to a Gaussian distribution model. Incident case modeling was performed 
using a non-parametric Kernel density estimate to generate probability density function 
(PDF). This work adopts a probability approach for analysis similar to [25] and [26], 
which used a generated PDF to asses vehicle class distribution on the road. The 
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formula for the model is given by a smoothing spline, 3rd degree piecewise polynomial. 
The resulting formula has 70 parameter coefficients. Figure 7-18 illustrates probability 
for the three cases overlaying the model. High overlap is shown when the value of free-
flow mean speed is near the speed limit. Although fitting of snow showed less 
goodness-of-fit than normal free-flow traffic relative to normal distribution, Bayesian 
inference results exhibited robustness in decision making and correct case 
identification, as evident in subsequent results. Results are indicative of the suitability of 
Bayesian inference for solving problems when accurate, closed-form models are not 
possible. Figure 7-19 depicts a probability plot showing various probability values for 
each model relative to various speed measurements on the highway. Three distinct 
regions are visible. Lower speeds of 0 to 30 mph result in higher probability of incident 
occurrence. As speeds increase to between 30 and 60 mph, the snow model tends to 
dominate with overall higher probability values. For travel near the speed-limit, the free-
flow model dominates probability values in spite of overlap among distribution models in 
this region. 

Figure 7-18 Model Fitting for Free-Flow, Snow, and Incident Conditions. 
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Figure 7-19 Probability for The Three Distribution Models. 

7.12.2 Bayesian Updating 

Implementing Bayes theorem in a time series input requires updating the posterior. 
Each of the aforementioned cases occurred over individual time intervals. Snow, for 
instance, accumulates with time, and the effect on roadways becomes apparent after 
several hours of continuous snowfall. By contrast, effects of a road incident occur 
almost instantaneously. Thus, one can intuitively suggest that updating probabilities is 
related to the duration of the event and the time required for its effects to manifest. As a 
result, posterior probability was averaged over the course of an hour and a half for 
incident data and over five hours for the snow event. Free-flow update time was chosen 
to match the shortest length of time for all cases. Values were chosen based on the 
duration each event modeled for one day. Prior update time remains an optimization 
research problem that requires a larger sample size for investigation. Notably, there is a 
tradeoff between the system’s ability to instantly detect an event (i.e., response time) 
and the stability and accuracy of the system. Decreasing update time results in near 
instantaneous updating, which causes fast inference decisions. False detection is 
expected to occur when small values are used, particularly in cases where speed 
measurements caused by outliers and anomalies are present in the data, or for cases in 
which there is a high variance between consecutive data samples. On the other hand, 
increasing update time could result in the system’s inability to detect extremely short 
incident occurrences for durations of 15 or fewer minutes. After taking into account 
these details, the Bayesian inference engine was coded using Matlab. Inputs of actual 
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speed measurements from NPRMDS—which simulated real-time measurements—were 
input into the system. System output was a prediction of the type of condition (i.e., 
event) serving as the source of the input speed measurements given. Results per event 
are offered below. 

7.12.3 Example: Incident 

Figure 87 shows a snap shot of the Bayesian inference engine GUI final output 
after a day of monitoring. The top subplot illustrates speed records arriving in real time. 
The bottom subplot illustrates the probability of the Bayesian engine pertaining to each 
of the three defined states: incident, weather (in this case, snow), and free-flow. The 
right subplot illustrates system output. For this implementation, a threshold of 40% 
confidence was required for decision-making. The threshold is flexible and can be 
modified as needed. Figure 7-20 indicates incident detection between 4:23 and 5:20 
p.m. 

 

Figure 7-20 Incident Detection Occurring on OK I-35 on 18 January 2015. 
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8. CONCLUSION 
 

8.1  Research Outcomes 

The current ODOT implementation of the Real-Time System Management 
Information Program (RTSMIP) was analyzed. The research team studied the system’s 
reliability and responsiveness, and then evaluated the system’s tolerance to hardware 
failures. Next, 10 Bluetooth identification devices for monitoring TT were deployed, 
which have proven accurate given a moderate (7-10%) penetration of Bluetooth-
equipped vehicles. Deployed Bluetooth systems were used to evaluate ODOT TT 
accuracy. System responsiveness, accuracy, and availability were reevaluated for 
additional TT measurements following Bluetooth identification device installation. 

The algorithms for collecting traffic information from various ODOT platforms were 
developed, and then the data was normalized across time and space for evaluation. 
Also, the models and algorithms for identifying TT anomalies were developed. The TT 
anomalies are related to traffic- or weather-related factors, including incidents, work 
zones, demand fluctuation, special event traffic signals, and weather/road conditions. 
Furthermore, the models and algorithms for identifying TT errors caused by sensor 
malfunction or failure were developed.  

This fiscal year, the project recorded two significant successful technology 
transfers: 1) an inexpensive (i.e., $500 versus $5,000 for commercial systems) portable 
Bluetooth monitoring system that when integrated with the current ODOT network will 
immediately impact ODOT traffic management programs, and 2) a novel design for 
developing a TTR and monitoring system composed of multi-sensing technology that 
leverages empirically developed models for providing accurate information about traffic 
flow and congestion. This technology is currently prototype to product. 

8.2  Future Work Plan 

The research team plans the following work during the coming year: 

• Continue to field test the developed Bluetooth station for determining: 1) 
acceptable separation distance between deployment sites while maintaining 
accurate measurements; and 2) total number and site locations for achieving a 
comprehensive and accurate overview of traffic flow in a given region.  

• Continue to study current ODOT system reliability, responsiveness, and 
robustness. The research team will analyze and adequately characterize each TT 
data source (currently, via radar and HERE.COM), including data structure format; 
TT collection method and calculations; TT spatial resolution per method; and TT 
temporal resolution per method currently available for ODOT TT system 
implementation. This objective is critical for data processing, analysis, and fusion. 
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• Build upon insights obtained from the previous years’ objective with an aim to 
develop algorithms for collecting traffic information from various ODOT platforms 
and to homogenize data across temporal and spatial domains. Preparing datasets 
for analyses requires that algorithms perform data conditioning, including 
detection and removal of TT anomalies, imputation, and interpolation for missing 
data due to either hardware failure or lack of TT measurements. The research 
team will construct clean TT datasets for modeling and predicting TT reliability.  

• Continue to refine the developed statistical distribution models and prediction 
models to gain an understanding of the effects of congestion-causing factors, such 
as traffic incidents and adverse weather conditions on TT measurements. Both an 
offline and an online (i.e., real-time) computation engine will be developed to utilize 
historical statistical models representing various operation conditions for 
predicting and enhancing TT reliability in real time. The team will also incorporate 
TT measurements obtained at Bluetooth stations currently integrated by ODOT 
systems for improving overall system responsiveness, accuracy, and availability. 
Various statistical evaluation metrics will be used to represent system accuracy, 
including Mean Absolut Error (MAE) as an indicator of expected error from an 
average reading; Mean Absolute Percent Error (MAPE) as an indicator of a 
systematic bias to the error such that TT values are consistently high or low; and 
Root Mean Squared Error (RMSE) as an indicator of mean deviation of TT 
readings. Divergence between TT probability distributions can be found using 
Kullback–Leibler Divergence (KLD) measure. Chi-squared and null-hypothesis 
testing methods will also be used to examine significant differences with respect 
to performance measures. Statistical metrics will be calculated for each segment 
at different levels of temporal resolutions, including predefined system, 10-minute 
response mandated by FHWA Section 1201 [27]. 
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APPENDIX A: NOTABLE STUDIES OF TRAVEL TIME RELIABILITY 
 

A.1 Evaluation of the Impact of Travel Time Reliability on Urban Expressway 

Traffic Safety [5] 

The objective of this study was to examine whether travel time reliability has an 
impact on crash frequency on urban expressways.  A 20-mi segment of urban 
expressway SR-408 located in Orlando, in central Florida, was used for the purpose of 
this study. 

Multiple travel time reliability indicators derived from the AVI system on the studied 
expressway were developed.  Percentage of variation, buffer index, and misery index 
were three major reliability metrics used in the evaluation; the latter two emphasize the 
late arrivals, while the first indicator gives equal weight to early and late arrivals. 
Bayesian hierarchical Poisson lognormal models were applied to calibrate the effects of 
these indicators. To test the necessity of having a reliability indicator, models with only 
traffic flow parameters and with a latent reliability variable from structural equation 
models (SEM) were constructed.  The majority of t crashes on SR-408 expressway 
were multivehicle crashes, implying potential differences in crash mechanisms 
compared with single-vehicle crashes. Therefore, the performances of the multiple 
reliability indicators were evaluated for total crashes, multivehicle crashes, and single-
vehicle crashes.   

By comparing the performances of percentage of variation, buffer index, and 
misery index, both buffer index and misery index proved to have significant effects on 
total and multivehicle crashes, while percentage of variation could not reflect this effect. 
This difference between the performances of the three variables suggested that to 
understand the effects of travel time reliability, early and late arrivals should be 
differentiated. Reliability issues caused by late arrivals would pose higher risks for 
motorists. 

Both the buffer index and misery index indicated that on urban expressways, lower 
travel time reliability would cause more multivehicle crashes than would single-vehicle 
crashes. Multivehicle crashes, especially rear-end and sideswipe crashes, often result 
from inappropriate lane changing and speed difference between leading and following 
vehicles. As a result, improving travel time reliability could efficiently reduce unexpected 
driving behaviors and risky interactions between vehicles, thus achieving more 
consistent traffic flow and safer roadway environment. 

Previous crash frequency models might deduce the effects of travel time reliability 
according to speed variation (standard deviation of speed and coefficient of variation of 
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speed). To assess the potential benefits that a direct travel time reliability indicator 
brings in safety analysis, the models with buffer index and misery index were compared 
with models with traditional traffic flow parameters and with latent reliability variable built 
on the SEM. It was also confirmed that to interpret the effects of reliability, direct travel 
time reliability indicators should be used, instead of speed variation or latent reliability 
variables. 

For traffic agencies, the current study suggests that better travel time reliability 
would not only improve motorists’ experience on their system, but would also have a 
positive influence on traffic safety, especially on collisions between vehicles. Reduction 
in reliability caused by delayed trips is worth extra attention from operators, and such a 
conclusion indirectly encourages efforts to reduce congestion. At present, many toll and 
turnpike agencies provide travelers with real-time travel time estimation and congestion 
warning by using dynamic message signs. These signs are beneficial as a way to make 
road users prepared for current traffic conditions and adjust their driving accordingly. 
With more consistent traffic flow, better traffic systems pertaining to safety, reliability, 
and efficiency will eventually be achieved. 
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A.2 Travel Time Reliability under Varying Freeway Operating Conditions [28] 

The objective of this thesis is was to identify measures and methods to evaluate 
travel time reliability; and apply those methods to study the reliability of travel time along 
the I-65 corridor in the State of Alabama. The main objectives of this study were:  

a) Calculate reliability metrics including standard deviation, % variability, buffer 
time, buffer time index, travel time index, and planning time index using travel 
time data collected from INRIX for a study corridor in Alabama;  

b) Investigate effect of traffic accidents on travel time reliability, and  

c) Compare the field planning time index (PTI) with PTI values calculated using 
model proposed by SHRP-2 L03 project. 

The data used in this study were collected in 2010 using geographic position 
systems (GPS) technology in freight vehicles and INRIX, a leading provider of traffic 
information conducted data processing. Traffic incident data were provided by the 
Alabama Service and Assistance Patrol (ASAP) and were used to analyze the effect of 
traffic accidents on travel time reliability 

The author investigated the travel time reliability of the I-65 corridor by analyzing 
the variation of reliability indices (planning index and travel time index) by link as well as 
along the entire corridor as well as four sub-corridors. The effect of accidents on travel 
time reliability was also investigated by examining the variations in planning time index 
with and without the events.  

Study findings indicate that travel time reliability is closely associated to traffic 
demand/congestion.  

A noticeable increase in PTI values was observed under incident conditions 
ranging from 14% to over 170%.  
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A.3 Guide to Establishing Monitoring Programs for Travel Time Reliability [20]

This Guide documents the process of how to develop and use a travel time 
reliability monitoring system (TTRMS). The information included in the Guide should be 
useful for system operators in determining what actions they need to take to reduce the 
variability of travel time and enhance reliability. A companion to the Guide is a brief, 
stand-alone document “Handbook for Communicating Travel Time Reliability Through 
Graphics and Tables” that provides suggestions for communicating information about 
time travel reliability. 

A TTRMS can help operating agencies monitor system performance, understand 
the impacts of the various factors that influence travel time, and provide useful 
information to system users about what travel time reliability to expect. With this 
information, operating agencies can make better decisions about what actions to take to 
help improve reliability.  

The Guide has two parts. Chapters 1 through 5 describe the process of 
measuring, characterizing, identifying, and understanding the effects of recurrent 
congestion and non-recurrent events that affect travel time reliability. The appendices 
provide more detailed information about the functional specification of a monitoring 
system, methods, a series of case studies, and a set of use cases that describe how 
different users of the TTRMS interact with the system. 

The Guide describes four key information flow steps that a TTRMS must execute 
to fulfill its purpose as a decision support tool:  

1. Measure segment and route travel times. The Guide includes good discussion on
how to measure travel times using available technologies and statistical
techniques.

2. Characterize the reliability of a given system. This process entails taking a set of
measured travel times and assembling them into probability density functions
and cumulative density functions (CDFs) to characterize the performance of a
given segment or route, usually specific to a particular operating regime (a
combination of congestion level and nonrecurring event).

3. Identify the sources of unreliability and how to improve reliability. The guide
follows the causal list used by the Federal Highway Administration (FHWA) to
describe why congestion arises: traffic incidents, work zones, demand
fluctuations, special events, traffic control devices, weather, and inadequate base
capacity.  It addresses how to pull in data for these sources and effectively fuse
them with travel time data. Identifying the travel times affected by these sources
of congestion is required preparation for understanding system reliability.
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4. Help operators understand the impact of these sources of unreliability on the 
system. This step involves both quantitative and qualitative methodologies to 
transform raw data into actionable decisions.  

The process described above is designed to be integrated within an existing traffic 
management system with a structure like that depicted in Figure A-1. The figure shows 
the three major modules of a TTRMS: a data manager, a computation engine, and a 
report generator. The data manager assembles incoming data from traffic sensors and 
other systems, such as weather data and incident data, and places them in a database 
that is ready for analysis as “cleaned data.” The computation engine works with the 
cleaned data to prepare indications of the system’s reliability (travel time PDFs 
organized by regimes).  Regimes consist of the congestion level and the type of 
nonrecurring event (including none), such as high congestion and an incident or low 
congestion and work zone activity. The report generator uses the computation engine to 
analyze the data and respond to inquiries from system managers or travelers.  

 

Figure A-1 TTRMS Overview with Boxes for Modules and Circles for Inputs and 
Outputs [20]. 
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A.4 Evaluating Alternative Operations Strategies to Improve Travel Time

Reliability [29] 

The objective of this SHRP-2 project was to identify and evaluate strategies and 
tactics to improve the travel time reliability of users of the roadway network—travelers 
and freight shippers in urban and rural areas.  The report presents two categories of 
actions that can be used to respond to the seven sources of congestion: fluctuations in 
travel demand, special events that cause abnormal levels of demand, bottlenecks, 
incidents, weather conditions, work zones, and traffic controls. 

The first category addresses the demand for travel and includes the use of travel 
information to influence when, where, how, and how much travel (both personal travel 
and freight movement) occurs. This category includes the application of pricing 
mechanisms to influence travel behavior as well as to generate the funds needed for 
operating, maintaining, and improving the transportation system. 

The second category includes actions to increase roadway capacity, such as the 
following: 

• Expansions of highway facilities;

• Application of better operational and technical systems to maximize the
performance of existing infrastructure;

• Advances in technology and procedures that more quickly restore capacity
following disruptions (incidents, weather conditions, work zones); and

• Optimal use of existing transportation system capacity controlled by other
transportation agencies, firms, or individuals. (This can be accomplished by
providing incentives for mode shifts from single-occupant vehicles to multi-
occupant vehicles and more effective use of alternative rights-of-way.)

Table A-1, Table A-2 and Table A-3 summarize the actions for reliable 
transportation of persons and freight.   The types of solutions that can address demand 
and capacity imbalances depend on whether congestion can be anticipated or whether 
it results from unexpected events.   In the case of recurring congestion, demand 
management and capacity increases are likely to be effective in improving reliability. In 
cases in which unexpected disruptions cause the bulk of congestion, techniques that 
detect disruptions and facilitate rapid recovery from those events are more likely to be 
effective.  

The report presents forecasts of the year 2030 under alternative assumptions that 
may influence travel time reliability.  In addition, the report discusses options related to 
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technological changes, operational solutions, and organizational actions that have the 
potential to improve travel time reliability both now and in the future (by the year 2030).   

Table A-1  Actions and Consequences of Unreliability for Passenger Travelers 
[29]. 

 

Table A-2 Classification of Freight Movers by Characteristics [29]. 
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Table A-3 Actions of Unreliability for Freight Movers [29]. 
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A.5 Incorporation of Travel Time Reliability into the HCM [30] 

The objectives of SHRP-2 Project L08 were: 1) incorporate non-recurring 
congestion impacts into the Highway Capacity Manual (HCM) procedure, and 2) expand 
the analysis horizon from a single study period (typically an a.m. or p.m. peak period) to 
an extended time horizon of several weeks or months to assess the variability and the 
quality of service the facility provides to its users.  

A deterministic approach to scenario generation was proposed for freeway 
facilities. This approach enumerated different operational conditions of a freeway facility 
based on different realization of factors which affect the travel time.  

The scenario generation for urban streets consisted of four sequential procedures; 
each procedure processes the set of analysis periods in chronologic order:  

• The first procedure predicts weather event date, time, type (i.e., rain or snow), 
and duration.  

• The second procedure identifies the appropriate traffic volume adjustment factors 
for each date and time during the reliability reporting period.  

• The third procedure predicts incident event date, time, and duration. It also 
determines incident event type (i.e., crash or non-crash), severity level, and 
location on the facility.  

• The fourth procedure uses the results from the preceding three procedures to 
develop one urban streets engine input file for each scenario in the reliability 
reporting period.  

The research team recommended that travel time reliability be used as a 
performance measure to describe travel characteristics on freeways and urban streets. 
Subsequently, consideration can be given to using travel time reliability to define level of 
service (LOS). 
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A.6 Methodology for Estimating the Value of Travel Time Reliability for Truck

Freight System Users [31] 

The goal of NCHRP Project 08-99 was to develop and demonstrate a methodology 
for estimating the value of travel time reliability for truck freight system users.  The 
research and modeling were comprised of four major activities: 

1. An in-depth program of survey research to help fill the gaps in the body of
knowledge regarding how truck service providers and shippers view unreliability,
what thresholds of unreliability are significant and require actions to mitigate, and
how supply chain participants respond in terms of strategies and behaviors to
mitigate unreliability.  This phase of the research comprised three different
efforts: (1) an initial online survey of shippers and truck transportation service
providers; (2) in depth interviews of shippers and transportation service providers
(interviewees are not specifically drawn from the online survey roster); and (3) a
shorter but more focused follow-up online survey, narrowing in on the most
common response to unreliable conditions--adding buffer time to truck
schedules.

2. A framework for assessing the economic valuation of travel time unreliability was
prepared based on knowledge gained from the survey and interview research.  In
addition, an Excel-based modeling tool labeled the “Truck Freight Reliability
Valuation Model” was developed to help estimate the additional costs per trip for
various trip parameters given varying levels of travel time unreliability. The Buffer
Index was the primary metric of uncertainty in the model.

3. Two case studies to demonstrate the use of the model in real world planning
situations: 1) a major truck freight corridor in Georgia and 2) a U.S.–Mexico truck
border crossing.  The demonstrations applied corridor level data from existing
studies (Buffer Index values at chokepoints, AADT truck volumes, and median
trip times and speeds) to estimate the additional annual economic costs of
unreliability.

4. Recommendations for future research were presented to extend the results of
the study including a more complete survey and modeling protocol for a next
phase of economic valuation research beyond the completion of NCHRP 08-99
project.

Figure A-2 through Figure A-5 summarize the survey responses of 
shippers and truck transportation service providers. 
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Figure A-2 Short-Term Immediate Responses—Shippers’ Survey [31]. 

 

Figure A-3 Permanent Responses—Shippers’ Survey [31]. 
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Figure A-4 Short-Term Immediate Responses—Transportation Providers [31]. 

 

Figure A-5 Permanent Responses—Transportation Providers [31]. 
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A.7 Predicting Travel Time Reliability using Mobile Phone GPS Data [32] 

The authors present a method labeled “Travel Time Reliability Inference and 
Prediction (TRIP)” to predict the probability distribution of travel time on an arbitrary 
route in a road network at an arbitrary time, using GPS data from mobile phones or 
other probe vehicles.  Each GPS observation consists of location, speed, and heading 
measurements, along with a time stamp. For mobile phones, a GPS measurement is 
recorded whenever phone applications access GPS information, not all of which are 
mapping or routing applications. Therefore, the frequency of GPS measurements 
varies, and the phone is not necessarily in a moving vehicle at the time when the 
measurements are taken.  Motorized vehicle trips are isolated using a set of heuristics. 

TRIP uses information from all the trips in the historical data to train a model for 
travel time on routes, learning the characteristics of individual roads and the effect of 
time of the week, road classification, and speed limit. We model travel time variability 
both at the trip level and at the level of the individual road network links included in the 
route. This decomposition is appropriate because some sources of variability affect the 
entire trip (such as driver habits, vehicle characteristics, or unexpected network-wide 
traffic conditions), while other sources of variability are localized (such as a delay due to 
a train crossing or construction). We define a network link to be a directed section of 
road that is not divided by an intersection, and on which the measured features of the 
road (road classification, speed limit, number of lanes, etc.) are constant. 

The model captures weekly cycles in congestion levels, gives informed predictions 
for parts of the road network with little data.  It utilizes a computational method for 
training and prediction based on maximum a posteriori estimation via Expectation 
Conditional Maximization. This yields an iterative training process with closed-form 
update equations that can be computed using parallelization across links and trips. As a 
result, it is computationally efficient even on large road networks and for large datasets. 

The authors evaluated TRIP in a case study using large volumes of GPS data from 
Windows mobile phones in the Seattle metropolitan region.  TRIP provided improved 
interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for 
travel time prediction as used in Bing Maps.  It also provided deterministic predictions 
that are as accurate as Bing Maps predictions, despite using fewer explanatory 
variables, and differing from the observed travel times by only 10.1% on average over 
35,190 test trips. The authors concluded that TRIP is the first method to provide 
accurate predictions of travel time reliability for complete, large-scale road networks. 

Future work proposed by the authors included extending TRIP to incorporate 
additional variables, including those used in Clearflow learning and inference. For 
example, this would allow TRIP to take into account real-time information about traffic 
conditions, as measured using data from sensors installed in highways, or average 
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measured GPS speeds from mobile phones during the current time period. This 
extension has the potential to provide narrower distribution forecasts and predictive 
intervals, and even more accurate deterministic estimates. 
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A.8 Estimating Path Travel-Time Reliability [33] 

This study involved collection and analysis of Automatic Vehicle Identification (AVI) 
data from a 10-mile segment of I-35 running through San Antonio, Texas.  AVI 
technology enables spatial travel-time measurement using fixed-location equipment to 
identify and track a subset of vehicles in the traffic stream.  By matching the unique 
vehicle identifications at different reader locations, spatial estimates of travel times can 
be computed. The study corridor was selected because its AVI stations provided the 
highest number of travel-time readings of all the TransGuide AVI stations.  Five freeway 
segments were defined between the AVI stations.  The resulting segments varied in 
length between 1.12 and 2.68 miles and all had the same speed limit. 

Statistical tests were performed to determine the probability distributions of travel 
times along the study corridor during uncongested traffic (steady state conditions). The 
authors demonstrated through goodness-of-fit tests (the Kolmogorov-Smirnov K-S test, 
the Anderson-Darling A-D test, and the chi-square test) that the assumption of normality 
is, from a theoretical standpoint, inconsistent with field travel-time observations and that 
a lognormal distribution is more representative of roadway travel times. However, visual 
inspection of outlier observations at the tail of the distribution demonstrated that the 
normality assumption may be sufficient from a practical standpoint given its 
computational simplicity.  

Path travel-time reliability was estimated as the probability that the trip travel time 
between an origin-destination pair (tt) is less than some arbitrary travel time (t) 
assuming that travel times are normally distributed. Key parameters in estimating path 
travel-time reliability include not only estimating the path mean travel time but also 
estimating the travel-time variance.  The authors addressed the assumption of segment 
travel-time independence which ignores any covariance across segments.  They found 
that this assumption is not very accurate given that traffic congestion propagates both 
temporally and spatially, resulting in segment travel times that are typically highly 
correlated. 

The authors proposed five methods for the estimation of path travel-time variance 
from its component segment travel-time variances. The analysis demonstrated that 
computing the trip travel-time coefficient of variation as the conditional expectation over 
all realizations of the various roadway segments that make up a trip (Method 3) 
provided estimates within 13% of field observations for both uncongested and 
congested conditions. 
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A.9 Travel Time Reliability as a Service Measure for Urban Freeways in Florida 

[34] 

This paper summarizes the findings of a research project sponsored by the Florida 
Department of Transportation (FDOT) to develop travel time reliability (TTR) service 
measure for use in Florida and to serve as a basis for including a reliability service 
measure in the Highway Capacity Manual (HCM).  A service measure defines the 
quality of service provided by a highway segment. The HCM defines six levels of 
service (LOS) for freeways based on traffic density (vehicles per mile per lane).  LOS is 
a spatially localized measure.  Because TTR is directly related to nonrecurring sources 
of congestion, a TTR-based service measure provides a way to identifying deficiencies, 
measure the performance of operations-related improvements and communicate 
performance to nontechnical audiences.  SHRP-2 Project L08 examined the issue of a 
travel time reliability service measure and recommended the use of a Reliability Rating 
as the basis for a service measure.  However, SHRP-2 Project L08 stopped short of 
defining actual LOS ranges. 

The authors presented four options for defining reliability LOS for Florida: 

1. Travel time reliability LOS based on the SHRP-2 Project L08 Reliability Rating; 

2. Travel time reliability LOS based on the amount of Vehicle-Miles of Travel (VMT) 
that occurs in travel (space-mean) speed ranges; 

3. Travel time reliability LOS based on a speed statistic from the distribution of 
travel speeds; and 

4. Travel time reliability LOS based on a travel time reliability index for the mean, 
80th, and 95th percentile Travel Time Index (TTI). 

Two travel time reliability LOS measures based on the first and second options for 
urban freeways were recommended by the authors.   Although the study did not 
recommend final LOS ranges, the two options are based on the same concept that 
urban freeway LOS degrades as a function of travel time, not density (current measure 
of effectiveness used in HCM).  For freeway facilities that are routinely uncongested or 
for long distance trips, density is still the key factor determining the user experience.  
When non-recurring congestion occurs on these facilities, it is usually caused by 
disruptions such as incidents, inclement weather, and work zones. 

The authors concluded that using travel time for facility-based LOS analysis on 
urban freeways is consistent with the HCM approach to urban streets.  Achieving this 
consistency for urban facilities in the HCM requires deliberations within the Highway 
Capacity and Quality of Service Committee of the TRB to finalize the LOS ranges.  
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A.10 Impact of Data Source on Travel Time Reliability Assessment [35] 

This study investigated the effects of travel-time/speed data sources on travel time 
reliability measures by utilizing two independent data sources, Bluetooth and INRIX, to 
derive different TTR performance metrics.  Data were gathered from two freeway 
segments I-95 and I-270 in Maryland where I-270 contains one HOV lane.  Travel time 
data were obtained from permanently deployed Bluetooth sensors and INRX for the 
entire 2012 year.  Two primary issues regarding data quality are addressed: 
determining an equivalent INRIX path travel time and high-occupancy vehicle (HOV) 
lane travel time. 

The Bluetooth technique provides direct measurement of segment travel time 
between two consecutive Bluetooth sensors as individual vehicles enter and exit the 
segment.  INRIX reports data on roadway segments of different lengths using a 
common industry convention known as Traffic Message Channel (TMC ) Location 
Codes.  Because of the temporal and spatial changes in traffic conditions, adding up the 
INRIX travel time measured at the same instant for each TMC would be problematic. 
The authors developed a backtracking algorithm for estimating the equivalent path 
travel time based on INRIX data. 

Although the Bluetooth technique is capable of detecting individual vehicle travel 
time for different lanes, it cannot automatically separate vehicle travel time for an HOV 
lane. To examine the impact of the I-270 HOV lane, the authors developed a 
classification technique to separate vehicle travel time on the HOV lane from that on 
mixed-traffic lanes. For INRIX, only one measure of aggregated traffic information at 
each time stamp is provided, and it does not specify traffic information for different types 
of lanes.  

The researchers applied the Welch's t-test to examine the statistical differences 
between TTR performances measures derived from the two sources. The test results 
indicated that there was no significant evidence that reliability performance measures 
derived from the Bluetooth and INRIX data were different from each other on the I-95 
segment.  However, reliability measures obtained from these sources were statistically 
significantly different from each other on I-270, due to presence of HOV lanes.  

Figure A-6 depicts the hourly Travel Time Index (TTI) and Planning Time Index 
(PTI) measures based on both Bluetooth and INRIX data obtained from I-270. Because 
INRIX data on I-270 segment does not differentiate between lanes, the reliability 
measures obtained from INRIX and Bluetooth are different from each other.  To 
examine the effect of HOV operations on reliability index, Bluetooth data may be used.  
The authors found that among all the TTR performance measures, standard deviation 
and performance variation measures are more sensitive to the data source. 
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Figure A-6 Plot of INRIX and Bluetooth Data for I-270 Peak Hours of May 16, 2012 
[35]. 
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A.11 Travel Time Reliability in Indiana [36] 

The objectives of this study were: 1) to assess the reliability of travel times on a 
number of different routes in Indiana, 2) to formulate a methodology to obtain travel time 
data using Bluetooth technology, and 3) to observe daily and inter-daily variations as 
well as those due to poor weather conditions and estimate econometric models to 
predict travel time and variability.  To accomplish the first objective, travel time reliability 
was studied on 3 State Routes, 3 US Routes and 1 Interstate in the Indiana cities of 
Lafayette, Frankfort, Crawfordsville, Attica, Brownsburg, Avon, and Indianapolis.  Travel 
time data were collected using a GPS-based floating car technique. The findings of this 
phase of the study showed that travel time variability on the roadway sections studied 
was generally not a problem.  The standard deviation of travel time during peak periods 
ranged between 5% and 10% of the mean travel time. This implies that in order for 
travelers to arrive at their destinations with less than 15% probability of being late, they 
should incorporate an additional buffer of a bit more than 10% of the average travel 
time.  However, the data indicated that on heavier traveled corridors, the standard 
deviation of travel time can rise above 10% and in rare cases above 15%, requiring 
higher buffers. 

The second phase of the study involved collecting travel time data using Bluetooth 
technology on a segment of I-69 freeway in Northeast Indianapolis.  Bluetooth 
technology had a high sampling rate of up to 10% of the traffic flow.  The authors found 
that Bluetooth technology was relatively inexpensive to implement and it eliminated the 
need for complex algorithms to calculate travel time from point speed data. 

The third phase of the study was to analyze travel time data obtained using 
Bluetooth technology along two segments of I-69 in Indianapolis for a period of two 
weeks to observe daily and inter-daily variations as well as those due to poor weather 
conditions and estimate econometric models to predict travel time and variability. The 
data showed that at any point during the day, the travel time may vary by up to 100% of 
the average travel time. The authors speculated that this was due to individual driver 
behavior.  In addition, the average travel time was observed to increase by up to 300% 
during the peak hours.  The standard deviation of individual travel times also increased 
during peak periods.  Travel times during the same day of the week were found to vary 
significantly particularly during the peak hours. 

To study the variability in travel time due to adverse weather, travel time data 
collected during a snow event were compared to travel time data obtained during good 
weather conditions. As expected, the analysis indicated that both the mean travel time 
and standard deviation of travel time were significantly different under adverse and 
normal weather conditions.  
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A.12 The Impact of Adverse Weather on Travel Time Variability of Freeway 

Corridor [37] 

The authors examined the effect of adverse weather such as rain, snow, ice, fog, 
and storm on the travel time reliability of freeway corridors. Travel times were obtained 
from the Regiolab-Delft which stores real-time traffic data collected from a network of 
freeways, provincial roads, and an urban network in the southwest of the Netherlands. 
Weather data for one year were collected from the weather stations of the Dutch 
Meteorological Institute KNMI. The study revealed that adverse weather events had a 
significant effect on the 90th percent travel time and resulted in 4-fold increases 
compared to that associated with normal weather condition.  In general, adverse 
weather conditions make travel time less reliable. Average travel time variability doubled 
in adverse weather condition, compared to normal conditions. The study found that rain 
has little or no effect on travel time variability below a certain critical threshold, but 
progressively impacts travel time variability above it. Statistical analysis also showed 
that ice had greater effect than other conditions examined (such as fog and snow) on 
travel time reliability. 
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A.13 Analytical Procedures for Determining the Impacts of Reliability Mitigation 

Strategies [38] 

The primary objective of SHRP-2 Project L03 was to develop predictive models 
that relate highway improvements (such as capacity improvement) to travel time 
reliability. In other words, how can reliability be related to highway, traffic, and operating 
conditions?  Because of cost considerations, the research team undertook an empirical 
approach based on data collected by other transportation agencies to characterize 
congestion and reliability. Sources of traffic data were the traffic management centers 
(TMCs) at a number of cities including Atlanta, Houston, Seattle, and Jacksonville.  
Incident and event data were provided by Traffic.com from their Traveler Information 
Management System (TIMS). Weather data were collected from the National Climatic 
Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA).  
Satellite imagery (lane configurations) and the 2007 Highway Performance Monitoring 
data were the sources for highway geometric data.  

The project had four distinct analytical steps i.e. 1) Exploratory analysis to 
understand the concept of reliability and various related parameters 2) Before-and-after 
case studies 3) Cross-sectional statistical modeling and 4) Congestion-by-source 
analysis. Based on the exploratory analyses, the research team decided to add the 80th 
percentile travel time to the list of reliability performance metrics since the 95th 
percentile travel time was too extreme a value to be influenced significantly by 
operations strategies. They also found that the Buffer Time Index (BTI) was too erratic 
for use as primary reliability metric.  

The second step of the project was to perform before-and-after analysis to predict 
the change in reliability due to improvements.  The term before refers to the time period 
prior to implementing the improvement, and the term after refers to the time period after 
implementing the improvement. Ideally, a control group is included in the before-and-
after analysis to help account for the influence of background factors.  In this project, the 
same highway section or network was studied with and without the improvement.  
Results of the before-and-after studies indicated that the average congestion is reduced 
and reliability is improved from all forms of improvements considered, including capacity 
expansion.  However, the research team recognized early in the research that it would 
be impossible to study all the possible improvement types in the field due to data 
limitations. Therefore, cross sectional analysis (step 3) was utilized for reliability 
prediction. 

In the cross-sectional statistical modeling step of the project, simple as well as 
complex models were developed to predict the overall travel time characteristics of a 
highway section in terms of both mean TT and TTR performance.  
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Micro-level congestion-by-source analysis was carried out in step-4 of the project 
to determine the factors that cause congestion.  For example, Figure A-7 shows that 
incidents, high demand, and weather were the main causes of congestion based on an 
analysis of the 50 worst congested peak periods of the Atlanta study sections.  The 
research team also conducted a detailed study of the causes of congestion by source 
for the Seattle area. They investigated all seven causes of congestion (traffic incidents, 
weather, work- zones, fluctuations in demand, special events, traffic control devices, 
and bottlenecks).  The study revealed that a majority of travel delays and thus 
congestion in the region was the direct result of traffic demand exceeding roadway 
capacity.  

 

Figure A-7 Congestion Causes for the 50 Worst Congested Peak Periods in 
Atlanta (2008) [38]. 
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