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Executive Summary 

This study numerically investigates the effect of combined torsional and lateral loading 

on the response of circular foundations. The research team performs a series of 

nonlinear finite element analysis (FEA) to determine collapse loads of drilled shafts in 

an undrained clay using the displacement-controlled swipe loading path method. As a 

validation of the finite element model, we compare the results from FEA under each 

individual component of load (i.e., a pure torque and a pure lateral load) against 

previous studies and theoretical values, which shows an excellent agreement. We 

further present the analysis results under combined lateral and torsional loading in the 

form of failure envelopes with various embedment depth ratios of foundations. Results 

from FEA clearly show that the lateral capacity of foundations is reduced by the 

concurrent application of torsion. We quantify such reduction effects as a function of 

torque-to-lateral load ratio and present the results in the form of design charts. 

 

Based on the insights gained from FEA, we further develop a novel analysis model 

through analytical approach. With an assumption of linear elasticity, we derive 

governing differential equations for a circular foundation, embedded in a multilayered 

soil, subjected to a combination of lateral and torsional loads using energy principles 

and variational calculus. A total of six interdependent differential equations result from 

the derivation. To solve the interdependent differential equations, we develop a 

numerical algorithm using an iterative solution scheme and test the algorithm under 

each individual loading component. The results from our analysis model under 

individual loading components show very good agreements with those from previous 

studies and FEA. The solution algorithm developed in this study can be fully 

implemented for combined loading case and thorough benchmark runs can be 

performed as future studies. Furthermore, the analysis model developed in this study 

can be regarded as the groundwork for more advanced models such as nonlinear 

analysis model that considers degradation of soil modulus using a piecewise-linear 

approach. Because the new analysis model is applicable for a multilayered soil, a 

systematic parametric study can be also performed to investigate the soil layering effect 

and optimize foundation design. 
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CHAPTER 1. INTRODUCTION 

1.1 PROBLEM STATEMENT 

The three most important forces that need to be considered for design of transportation 

infrastructure are compression, tension, and shear. For cantilever mast-arm structures ‒

‒ such as sign trusses, traffic signals, and mast-arm light poles ‒‒ subjected to high 

wind loads, torsion is a particular concern in addition to the three primary forces. Also, 

any transportation structure which is laterally loaded is prone to undergo some degree 

of torsion due to eccentricity of the applied load.   

 

While there are considerable studies on torsional behavior of the structural elements of 

a superstructure, little attention has been paid to torsional behavior of a foundation 

surrounded by soil or rock. Most studies on behavior of foundations have focused on 

axial or lateral loading condition, and routine foundation design does not consider 

torsional behavior. Although there is a growing literature on the torsional behavior of 

foundations, these studies have focused on foundations subjected to pure torsion 

(Randolph 1981; Hache and Valsangkar 1988; Guo and Randolph 1996; Guo et al. 

2007; Zhang 2010; Misra et al 2014; Li et al. 2017). However, the cantilever mast-arm 

structures are likely to impose a simultaneous loading of a torque and a lateral load on 

foundation due to their inverted L shapes. It has been reported that evaluating 

foundation stability against torsional and lateral load failures separately is not a safe 

practice (McVay et al. 2003). Unfortunately, no analysis models or design guidelines are 

available that can consider the combined effects of torsional and lateral loads on a 

foundation. Even, finite element analysis studies on foundations subjected to combined 

torsional and lateral loads are exceedingly rare.  

 

In this study, we perform a nonlinear finite element analysis (FEA) for a circular 

foundation under combined loading of a torque and a lateral load. To determine 

collapse loads, the displacement-controlled swipe loading path method is employed. 

Analysis results are presented in the form of failure envelopes as a function of 

embedment depth ratio for various definitions of ultimate lateral capacity. Results from 
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FEA clearly show that lateral capacity is reduced by the concurrent application of 

torsion, and the reduction effects are quantified as a function of torque-to-lateral load 

ratio. We also derive governing differential equations for a circular foundation, 

embedded in a layered soil, subjected to a combination of torsional and lateral loads 

based on energy principles and variational calculus. We further develop a numerical 

algorithm to solve these differential equations and test the algorithm under individual 

loading components. A full implementation of the solution algorithm can lead to a 

development of a novel analysis model for load-displacement response of circular 

foundations under simultaneous action of a torque and a lateral load as a future study.  

 

1.2 Background 

Impact of wind loads on stability of infrastructure is a very important design 

consideration. According to International Building Code (IBC 2015) and Minimum 

Design Loads for Buildings and Other Structures: ASCE/SEI 7-10 (ASCE 2013), 

ultimate design wind speeds of 115 miles per hour (185 km per hour) are typical in 

Region 6 states (AR, LA, NM, OK, and TX) for common transportation infrastructures 

such as bridges, as shown in Figure 1.1(a). Figure 1.1(a) further shows that the ultimate 

design wind speeds along coastal areas in Louisiana and Texas are much greater than 

115 mph (185 km per hour) due to hurricanes, and can be as high as 170 mph (274 km 

per hour). Many of the Region 6 states frequently experience tornadoes, and special 

structures must be designed to withstand very high wind speeds due to tornadoes. For 

example, FEMA (2007) recommends the wind speeds of at least 200 miles per hour 

(322 km per hour) in most areas of Region 6 states, except for New Mexico, for design 

of community tornado shelters [refer to Figure 1.1(b)]. 
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(a) 

 

(b) 

Figure 1.1 (a) Ultimate design wind speeds for Risk Category II buildings and other 
structures (IBC 2015) and (b) Design wind speeds for community shelters (FEMA 2007) 
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Large lateral loads induced by high winds will impose additional compression, tension, 

or shear forces on structural members and should be properly considered in design.  

Although these forces are the most common ones for typical structures, cantilever mast-

arm structures (i.e., inverted L shape structures) and structures subjected to eccentric 

lateral load may develop significant torsional load on foundations in addition to these 

forces. Figure 1.2(a) shows a foundation of a cantilever overhead sign support structure 

subjected to the torsional and lateral loads simultaneously, and Figure 1.2(b) shows a 

failure of cantilever sign support structure along I-65 in Tennessee, allegedly caused by 

a “prolonged exposure to wind created by tractor trailer gusts (Beneberu et al. 2014).”  
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(a) 

 

 

(b) 

 

Figure 1.2 (a) A foundation of cantilever overhead sign support subjected to the 
torsional and lateral loads simultaneously and (b) failure of cantilever sign support 

structure along I-65 in Tennessee (Beneberu et al. 2014) 
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As mentioned previously, when the torsional loads are considered, the current 

geotechnical design practice is to evaluate stability of foundations against torsional and 

lateral load failures separately. The effects of a torque on lateral capacity of foundation 

(or vice versa) are barely understood. However, recent centrifuge tests and field tests 

performed by the researchers at University of Florida (McVay et al. 2003; Hu et al. 

2006; Thiyyakkandi et al. 2016) have suggested that the lateral capacity of a drilled 

shaft is reduced when a torque and a lateral load are concurrently applied. This 

indicates that the current practice of separate evaluation of foundation stability against 

torsional and lateral load failures is not a safe practice. Because performing full-scale 

tests for various soil conditions with a wide range of foundation dimensions is practically 

and economically not feasible, there is a strong need to quantify the combined effects of 

lateral and torsional loads on foundation capacity through numerical analysis. 

 

1.3 Objectives 

The goal of this study is to numerically investigate the torsional and lateral resistances 

of circular foundations under combined loading. The main objectives of the study 

include:  

(a) Performing nonlinear finite element analysis to determine failure envelopes under 

combined torsional and lateral loading 

(b) Quantifying the effect of a torque on lateral capacity for various torque-to-lateral 

load ratios 

(c) Deriving governing differential equations for load-displacement response of a 

circular foundation in a layered soil subjected to torsional and lateral loads 

(d) Developing  solution algorithm to solve the differential equations numerically. 
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CHAPTER 2.  NUMERICAL MODELLING 

2.1 Finite element model 

The finite element analysis (FEA) is employed to investigate the behavior of a circular 

foundation subjected to under combined torsional and lateral loading using ABAQUS 

version 6.16 (Dassault Systèmes, 2016). The circular foundation, represented by a 

drilled shaft in this study, has a diameter D and a length Lp, embedded in a 

homogenous clay layer under undrained conditions. The diameter of the drilled shaft is 

set to be 1 m, and the effect of the embedment depth is investigated with three different 

lengths of the drilled shaft (Lp = 3, 5, and 10 m, corresponding to embedment depth 

ratios Lp/D of 3, 5, and 7, respectively). The Lp/D was limited to 10 because the 

embedment depth ratios of foundations for mast arm traffic sign and signal pole 

structures typically are smaller than 10. The linear elastic-perfectly plastic Tresca failure 

criterion is used to describe the clay behavior with an undrain shear strength of su and 

an undrained Young’s modulus of Eu = 500su. To simulate the constant volume 

response during undrained loading, a Poisson’s ratio s of 0.49 was used for the clay 

along with zero degree of friction and dilation angles. The drilled shaft is modelled as a 

linear elastic material with a Young’s modulus Ep = 25 GPa and Poisson’s ratio p = 0.3.  

 

Eight-node brick elements with reduced integration (C3D8R) were used to model the 

drilled shaft and surrounding soil. A thin band of soil elements was used to capture the 

severe distortion close to the foundation without an interface model, as has been done 

by other researchers (Taiebat and Carter 2004 and Fan and Meng 2011). The domain 

boundaries are 30D (i.e., 30 times the foundation diameter) in the horizontal direction 

and 2Lp (i.e., 2 times the foundation length) in the vertical direction to minimize the 

boundary effect. The side boundary is horizontally fixed, and the base boundary is fixed 

in both horizontal and vertical directions. Analyses were performed under displacement-

controlled conditions, where lateral and torsional displacements were applied at the 

foundation head and gradually increased.   
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2.2 Analysis results under a pure lateral load or a pure torque 

The response of the drilled shaft under each individual component of load is presented 

first, followed by that under the combined loading. 

 

2.2.1 Lateral response 

The ultimate lateral capacity of a short foundation in an undrained clay can be obtained 

as follows: 

 

where Hmax = ultimate lateral capacity, Lp = foundation embedment depth, D = 

foundation diameter, su = undrained shear strength of clay, and Nh = lateral capacity 

factor. Deng and Carter (1999) suggested that Nh = 4.8 for a caisson with load applied 

at the foundation head, which is also a ground surface. 

 

The load-displacement (H-wr) responses of the drilled shafts obtained from FEA under 

lateral load with Lp = 3, 5, and 10 m are presented in Figures 2.1(a), (b), and (c), 

respectively. 

  

max h p uH N L Ds=  (2.1) 
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Figure 2.1 Load-displacement response under pure lateral loading: (a) Lp/D = 3, (b) Lp/D 
= 5, and (c) Lp/D = 10 

 

The responses of drilled shafts under pure lateral load show nonlinear behavior, and it 

is clear that the lateral load approaches an asymptotic value at a large displacement. 

Although there are many criteria available in literature for determination of ultimate 

capacity of foundations under axial loading, such criteria are not well established for 

laterally loaded foundations. With the absence of widely accepted criteria for 

determination of ultimate lateral capacity Hmax, we use four different ultimate capacity 

criteria in this study: 

(a) (b)

(c)
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1) Hmax is defined as a load Hult after which the increase between two successive 

loads becomes less than 0.1%; this load is very close to the asymptotic value 

and might be considered as a true failure load; 

2) Hmax is defined as a load H0.1D at a lateral displacement corresponding to 10% of 

foundation diameter (wr,ult = 0.1D); 

3) Hmax is defined as a load H0.05D at a lateral displacement corresponding to 5% of 

foundation diameter (wr,ult = 0.05D);    

4) Hmax is defined as a load H0.025D at a lateral displacement corresponding to 2.5% 

of foundation diameter (wr,ult = 0.025D).    

 

Graphical illustrations of each criterion are presented in Figure 2.2. 

 

 

Figure 2.2 Graphical illustrations of ultimate lateral capacity criteria used in this study 
 

 

Ultimate lateral capacities Hmax determined using the aforementioned four criteria and 

their corresponding lateral displacements wr,ult are summarized in Table 2.1.  

 

 
 

Lateral load, H

Lateral 

displacement, wr

Hmax = Hult

Hmax = H0.1D

Hmax = H0.05D

Hmax = H0.025D

wr,ult0.1D0.05D
0.025D

i i+1

(Hi+1 ‒ Hi)/ Hi < 0.001
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 Table 2.1 Summary of ultimate lateral capacities under pure lateral loading for various 
ultimate capacity criteria 

Lp/D 
Hmax = 

Hult 
(kN) 

wr,ult 

(m) 
Nh 

Hmax = 
H0.1D 
(kN) 

wr,ult 

(m) 

Hmax = 
H0.05D 
(kN) 

wr,ult 

(m) 

Hmax = 
H0.025D 
(kN) 

wr,ult 

(m) 

3 668 0.15 4.45 664 0.1 636 0.05 574 0.025 

5 1130 0.18 4.52 1115 0.1 1038 0.05 871 0.025 

10 2478 0.63 4.96 2078 0.1 1591 0.05 1136 0.025 

 

Lateral capacity factors Nh from FEA were determined to be 4.45, 4.52, and 4.96 for 

foundations with Lp/D = 3, 5, and 10, respectively, using Hmax = Hult, and their values are 

given in Table 2.1. Despite slight differences, these lateral capacity factors are overall in 

good agreement with Nh = 4.8 obtained by Deng and Carter (1999) from their numerical 

analyses. 

 

 

2.2.2 Torsional response 

The relationship between a torque and an angle of twist for a straight cylinder with a 

fixed end is given as follows from elasticity theory: 

 

 

where p = angle of twist, T = applied torque, Gp = shear modulus of the cylinder, and Jp 

= polar moment of inertia of cross section of the cylinder (see Figure 2.3).  

 

p

p

p p

TL

G J
 =  (2.2) 
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Figure 2.3 Angle of twist of a cylinder subjected to a torque 
 

As shown in Figure 2.3, the angle of twist is greatest at the top of the cylinder and 

becomes zero at the base due to the fixed end condition. However, for a foundation 

embedded in soil, the angle of twist at the foundation base is not necessarily zero, 

especially for short foundations. Furthermore, when a torque is applied at the foundation 

head, frictional resistances develop 1) between the foundation and the surrounding soil 

along the shaft and 2) between the foundation base and the soil beneath it (refer to 

Figure 2.4). Therefore, an ultimate torsional capacity of a foundation in a homogeneous 

soil with an undrained shear strength su can be calculated as the sum of the shaft and 

base resistances as follows: 

 

 

where Tmax = ultimate torsional capacity. 

 

Lp

D = 2rp

T

p =
Gp Jp

T Lp

p

T

/2
2

max
0

( ) ( )(2 )
2 2 12

D p

s b u p u u

LD D
T T T s DL s r dr s D  

  
= + = + = +  

   
  (2.3) 
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Figure 2.4 Torsional resistances of the foundation in soil 
 

The torque-angle of twist (T-p) responses of the drilled shafts obtained from FEA under 

a pure toque with Lp = 3, 5, and 10 m are presented in Figures 2.5(a), (b), and (c), 

respectively. The torsional resistance from FEA linearly increases to its ultimate value 

and then remains constant after that, showing a behavior that is very close to linear-

elastic, perfectly-plastic. Ultimate torsional capacity Tmax and the corresponding angle of 

twist p,ult from FEA were taken to be the values where a sudden change in slope was 

observed from the T-p plots. For comparison purposes, T-p responses from Eqs. (2.2) 

and (2.3) are also plotted in Figure 2.5, assuming that the angle of twist linearly 

increases until T reaches Tmax and remain constants thereafter. Values of Tmax and p,ult 

obtained from the FEA and elasticity theory are summarized in Table 2.2 

.  

 

Lp

T

D

su: undrained 

shear strength

D = 2rp

r

T

dr

Ts: shaft 

resistance

Tb: base 

resistance
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Figure 2.5 Torque-angle of twist response under pure torsional loading: (a) Lp/D = 3, (b) 
Lp/D = 5, and (c) Lp/D = 10 

 

  

(a) (b)

(c)
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Table 2.2 Summary of ultimate torsional capacities under pure torsional loading 

Lp/D 
 
 
 

[1] 

Tmax  

(kN-
m) 

 
[2] 

p,ult  

(radian) 
 
 

[3] 

Tmax  from Eq. 
(2.3) 

(kN-m) 
 

[4] 

p,ult from Eq. (2.2) 
with T = Tmax in 

Column [4]  
(radian) 

[5] 

% difference in 
Tmax 

 

 

[6]* 

3 250 0.0033 249 0.0009 -0.4 

5 408 0.0041 406 0.0025 -0.5 

10 805 0.0080 798 0.0097 -0.9 

* [6] = {[4]-[2]}/[4]x100%  

 

Figure 2.5 and Table 2.2 show that Tmax values from FEA and Eq. (2.3) are in excellent 

agreements, with the largest difference being only 0.9% for Case 3 (Lp/D = 10). 

However, the angle of twist p,ult at the onset of the ultimate state show some 

discrepancies. For Cases 1 and 2 (Lp/D = 3 and 5, respectively), p,ult values at the 

foundation head from Eq. (2.2) are smaller than those from FEA. On the contrary, p,ult 

from Eq. (2.2) is greater than that from FEA for Case 3.  This is because Eq. (2.2) 

assumes the full fixity condition at the cylinder base (i.e., p at the cylinder base is zero) 

but, in case of foundations, the foundation base is not fully fixed and the angle of twist at 

the foundation head is a summation of the rotation at the foundation base and angle of 

twist along the foundation shaft. As shown in Figure 2.6, the amount of angle of twist 

along the foundation shaft (i.e., the difference in p between the foundation head and 

base) is smaller than the values computed from Eq. (2.2) for all three cases because of 

resistances offered by the surrounding soil. However, foundation base undergoes 

certain levels of rotation as well and, consequently, the angle of twist at the foundation 

head depends on the amount of rotation at the foundation base, which is in turn 

influenced by the foundation embedment depth ratio. Figure 2.6, in conjunction with 

Figure 2.5 and Table 2.2, supports that the results from FEA well conform to the physics 

of the problem. 
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Figure 2.6 Angle of twist versus depth under pure torsional loading: (a) Lp/D = 3, (b) 
Lp/D = 5, and (c) Lp/D = 10 

 

 

(a) (b)

(c)

p,head = 0.0033

p,base = 0.0029

Difference = 0.0004

p,head = 0.0041

p,base = 0.0030

Difference = 0.0011

p,head = 0.0080

p,base = 0.0034

Difference = 0.0046
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2.3 Analysis results under combined lateral and torsional loading 

2.3.1 Numerical loading method 

To determine the failure envelope under combined torsional and lateral loads, a two-

staged, displacement-controlled swipe loading method, proposed by Tan (1990), was 

employed in our FEA. In the first stage, a lateral displacement wr of the drilled shaft is 

prescribed and incrementally increased until the drilled shaft reaches an ultimate lateral 

load Hmax. Once the ultimate lateral load and its corresponding lateral displacement wr,ult 

are determined, then an angle of twist p of the drilled shaft head is gradually increased 

in the second stage while keeping the lateral displacement constant at wr,ult. The loading 

locus during the second stage can be considered as the failure envelop on the lateral-

torsional load space. The displacement-controlled swipe loading method have been 

widely used to determine failure envelopes for isolated footings under various combined 

loading spaces (Gourvenec and Randolph, 2003; Vulpe et al., 2014; Lee et al 2016). 

 

2.3.2 Failure envelopes under combined lateral and torsional loading 

A series of finite element analyses was performed to obtain failure envelopes of the 

drilled shafts subjected to a combination of lateral and torsional loading, and they are 
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presented in 

 

 

Figure 2.7. Note that four different definitions of Hmax (i.e., Hmax = Hult, H0.1D, H0.05D, and 

H0.025D), as presented in Figure 2.2 and Table 2.1, were used to plot the failure 

envelopes. Accordingly, a lateral displacement was gradually increased until reaching 

wr,ult for each definition of Hmax, and then an angle of twist p of the drilled shaft was 

increased while keeping the lateral displacement constant at wr,ult.  

  

(a) (b)

(c)
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Figure 2.7 Failure envelopes in a lateral-torsional loading plane: (a) Lp/D = 3, (b) Lp/D = 
5, and (c) Lp/D = 10 

 

(a) (b)

(c)
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Figure 2.7 suggests that lateral loads at each failure envelope (i.e., equivalent to the 

maximum lateral capacity for each ultimate capacity criteria) decreases with an 

(a) (b)

(c)
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increasing torsional load. The lateral and torsional loads shown in 

 

 

Figure 2.7 are normalized with respect to their maximum values Hmax and Tmax obtained 

under a pure lateral load and a pure torque, respectively, and the normalized failure 

envelopes are presented in Figure 2.8.  

 

(a) (b)

(c)
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Figure 2.8 Failure envelopes in a lateral-torsional loading plane normalized with respect 
to Hmax and Tmax: (a) Lp/D = 3, (b) Lp/D = 5, and (c) Lp/D = 10 

 

For Lp/D = 3, the normalized failure envelopes fall on top of each other regardless of 

definitions of Hmax; this suggests that a single failure envelope may be used for a 

foundation with an embedment depth ratio less than 3.  However, as the embedment 

depth ratio Lp/D increases, the normalized failure envelopes deviate from each other 

and do not justify the use of single failure envelope. Nonetheless, Figure 2.8 clearly 

(a) (b)

(c)
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suggest that the lateral capacity decreases as the torsional load increases, and vice 

versa, regardless of how ultimate capacity is defined. 

 

What could be more useful for design purpose is a chart that shows how much lateral 

capacity needs to be reduced for a given torque-to-lateral load ratio T/H. To achieve 

this, H/Hmax versus T/H are plotted in Figure 2.9 using the torsional and lateral loads 

presented in 

 

 

(a) (b)

(c)
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Figure 2.7. To illustrate how the charts in Figure 2.9 can be used for design, let us 

assume that the ultimate capacity criterion for lateral loading is defined as a load 

corresponding to a foundation head deflection of 10% of foundation diameter (Hmax = 

H0.1D). In the absence of a torsional loading (T/H = 0), 100% of Hmax can be used as an 

ultimate lateral capacity. However, if the foundation is to be subjected to a simultaneous 

loading of a torque and a lateral load with a ratio T/H of 0.5 m (say, T = 250 kN-m and H 

= 500 kN), then the charts Figure 2.9 suggest that the full lateral capacity cannot be 

used and should be reduced to 70~73% of Hmax. Similarly, for the ultimate capacity 

criterion of Hmax = H0.025D, the lateral capacity needs to be reduced to 79~92% of Hmax 

for T/H = 0.5 m, depending on Lp/D. The greatest reduction of lateral capacity observed 

from the FEA was about 63% with a T/H of 0.58 m for Lp/D = 5 (refer to Figure 2.9b). 

Whether H/Hmax continues to decrease beyond the range of T/H considered in this study 

is unknown at this time and warrants further investigation. Typical ranges of T/H for 

various transportation infrastructures will also need to be examined in future studies. 
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Figure 2.9 Lateral capacity reduction versus torque-to-lateral load ratio: (a) Lp/D = 3, (b) 
Lp/D = 5, and (c) Lp/D = 10 

 

 

2.3.3 Failure mechanisms 

To observe failure mechanisms of foundations subjected to combined lateral and 

torsional loads, the contour plots of maximum principal plastic strains obtained for the 

drilled shaft with Lp/D = 3 are presented, as a representative case, in Figure 2.10 for 

(a) (b)

(c)
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various loading levels. The plastic zone is very small at lower loading levels but 

becomes greater as the lateral load increases. When an ultimate lateral load is applied, 

much higher levels of plastic strains are observed near the foundation head and base 

than the middle portion of the foundation (refer to the figure at Hult in Figure 2.10a).  

Upon additional torsional loading, the plastic zone propagates along the foundation and 

the entire shaft is subjected to high plastic strain levels (refer to the figure at Hult -Tult in 

Figure 2.10a). Furthermore, the thickness of plastic zone becomes greater when the 

foundation is subjected an additional torsional loading (see the figure at Hult -Tult in 

Figure 2.10b).  

 

 

(a) 

H0.025D H0.05D H0.1D

Hult Hult - Tult
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(b) 

Figure 2.10 Contour plots of maximum principal plastic strains for Lp/D = 3: (a) front 
view and (b) top view 

H0.025D H0.05D
H0.1D

Hult
Hult - Tult
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CHAPTER 3. ANALYTICAL MODELLING 

3.1 Introduction 

As seen in CHAPTER 2, FEA successfully captures the effect of combined loading of a 

torque and a lateral on the behavior of circular foundations. However, it requires 

extensive computational efforts to determine failure envelopes and is often beyond the 

reach of ordinary engineers who may not be well versed in FEA. This chapter presents 

our efforts to develop an easy-to-use-yet-mathematically-rigorous analysis tool through 

analytical modelling of a circular foundation subjected to concurrent application of lateral 

and torsional loads.   

 

3.2 Mathematical formulation 

3.2.1 Problem definition and basic assumptions 

We consider a cylindrical foundation of length Lp and circular cross section of diameter 

D (=2rp). The foundation, which is under a lateral load H and a torque T, is embedded in 

a total of N horizontal soil layers. The foundation itself crosses m layers, while N − m 

layers exist below the base of the foundation. All soil layers extend to infinity in the 

radial direction, and the bottom (Nth) layer extends to infinity downward in the vertical 

direction. As shown in Figure 3.1, zH,i denotes the vertical depth from the ground 

surface to the bottom of any layer i, which implies that the thickness of layer i is zH,i – 

zH,i-1 with zH,0 = 0 and zH,N = ∞.  
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Figure 3.1 Geometry of the foundation-soil system 
 

Since the problem is axisymmetric, we choose a system of cylindrical coordinates with 

the origin coinciding with the center of the foundation cross section at the foundation 

head and the z axis coinciding with the foundation axis (z is positive in the downward 

direction). The soil medium within each layer is assumed to be isotropic, homogeneous, 

and linear elastic, with elastic properties described by Lame’s constants si and Gsi, 

which can be related to more recognizable Esi – si pair of elastic constants: si = 

Esisi/[(1+si)(1–2si)] and Gsi = Esi/[2(1+si)]. The foundation is described as a linear 

elastic material with Young’s modulus Ep and shear modulus Gp. It is also assumed that 

there is no slippage or separation between the foundation and the surrounding soil or 

between soil layers.  
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3.2.2 Soil displacements 

The soil displacement fields at any point of soil medium are assumed to be a product of 

separable variables, as done by many researchers (Vlasov and Leont’ev 1966; 

Vallabhan and Mustafa 1996; Basu et al. 2009; Seo et al. 2009; Salgado et al. 2013), as 

follows: 

 

 

 

 

where ur(r, , z), u(r, , z), and uz(r, , z) = lateral, tangential, and vertical soil 

displacements, respectively, at any point (r, , z) in the soil mass (refer to Figure 3.1); 

wr(z) = lateral displacement at the foundation-soil interface as a function of depth z; 

w(z) = tangential displacement at the foundation-soil interface as a function of depth z; 

p(z) = angle of twist of the foundation cross section (p = w /rp) varying with depth z; 

and r(r) and (r) = dimensionless functions varying along the radial distance r; these 

  functions are shape functions that describe the decreases in the soil displacements 

with increasing radial distance from the foundation axis. The   functions are equal to 

one at the foundation-soil interface (i.e., to r = rp), and this ensures proper foundation-

soil contact. Furthermore, the   functions are zero at r = ∞ because the soil 

displacements must vanish at infinite horizontal distances from the foundation.  Eq. (3.2) 

clearly states that the tangential soil displacement is influenced not only by the 

tangential displacement of the foundation due to the applied torque but also by the 

lateral displacement of the foundation caused by the lateral load.  Eq. (3.3) assumes 

that the vertical displacement of the soil caused by the lateral and torsional loads is 

negligible. 

 

( , , ) [ ( )cos ] ( )r r ru r z w z r  =  (3.1) 

( , , ) [ ( )sin ( )] ( ) [ ( )sin ( )] ( )r r p pu r z w z w z r w z r z r        = − + = − +  (3.2) 

( , , ) 0zu r z =  (3.3) 
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3.2.3 Stress-strain-displacement relationships 

The stress-strain relationship in an isotropic and elastic soil medium is expressed as 

follows: 

 

 

where rr, , zz = normal stresses; r, rz, z = shear stresses; rr, , zz = normal 

strains; r, rz, z = shear strains. 

 

With the assumed displacement field given in Eqs. (3.1) through (3.3), the strain-

displacement relationship is given by: 

 

 

 

3.2.4 Potential energy 

The total potential energy  of the foundation-soil system, including both internal and 

external potential energies, is given by. 
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where Ufoundation = strain energy in the foundation, Usoil = strain energy in the soil, and 

Uexternal = work done by external loads.   

 

The strain energy stored in the foundation due to the bending and torsion is obtained as 

follows: 

 

 

where Ip = moment of inertia of the foundation cross section (= rp
4/4 ) and Jp = polar 

moment of inertia of foundation cross section (= rp
4/2). Similarly, the strain energy in 

the soil is obtained by integrating the strain energy density of the soil (= ½pqpq where 

pq and pq are the stress and strain tensors in the soil, respectively) over the soil 

volume as follows: 

 

 

For the multilayered system as shown in Figure 3.1, Eq. (3.8) can be rewritten with 

properties of each soil layer:  
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where wri and pi are the functions wr(z) and p(z) within the ith layer. 

 

The work done by external loads is given by: 

 

 

 

3.2.5 Principle of minimum potential energy 

The principle of minimum potential energy states that a conservative system attains its 

equilibrium formation when its total potential energy is at a minimum (i.e. setting the first 

variation of the potential energy  equal to zero, where  is a variational operator). 

Applying  = 0 to Eq. (3.6) yields many terms that contain the first variations wr, r, 

p, and , and we obtain the following form of the equation by collecting and 

rearranging the terms:  
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Because the functions wr, r, p, and  in Eq. (3.11) are not known a priori, their 

variations are not zero according to the variational principle. Furthermore, since these 

functions are independent one another, Eq. (3.11) is satisfied if and only if their 

coefficients A(wr), B(r), C(p), and D() are all zero. The equilibrium configuration of 

the foundation-soil system is obtained when these expressions [A(wr) = 0, B(r) = 0, 

C(p) = 0, and D() = 0] are solved, which represent the governing differential 

equations of the functions wr(z), r(r), p(z), and (r). 

 

3.2.6 Governing differential equation for lateral displacement function wr 

The governing differential equation for the lateral displacement function wri(z) in any 

layer i is obtained by equating the coefficients of wri to zero. Two sub-domains are 

considered for the function wri(z): within the foundation length (0 ≤ z ≤ Lp) and beneath 

the foundation (Lp < z < ∞).  

 

For the domain within the foundation length (0 ≤ z ≤ Lp), the governing differential 

equation for the function wri(z) is given as 

 

and, the differential equation for the domain beneath the foundation (Lp < z < ∞) is given 

as 

 

where  
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Note that the index i for the domain within the foundation length (0 ≤ z ≤ Lp) ranges from 

1 to m and, for the domain beneath the foundation base it ranges from m+1 to N (see 

Figure 3.1). Because Eq. (3.12) is 4th order differential equation and there are m layers 

within the foundation, a total of 4m boundary conditions are needed to solve Eq. (3.12). 

First, four boundary conditions are obtained at the foundation head and base as follows: 

 

 

 

 

 

The remaining boundary conditions are then obtained from the continuity of variables at 

the interfaces within the foundation. These conditions yield 4m – 4 equations as follows 

because we have m‒1 interfaces (i =1, 2, …, m‒1):  
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1 1
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(0) (0)
2r r

p p r
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E I t H
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− =   

(shear force at foundation head = applied lateral load) 

(3.16) 

2

1

2

(0)
0r

p p

d w
E I

dz
=  (bending moment at foundation head = 0) (3.17) 

3

( 1)

( 1)3

( ) ( ) ( )
2 2

rm p rm p r m p

p p rm r m

d w L dw L dw L
E I t t

dz dz dz

+

+− = −   

(continuity of  shear force at foundation base) 

(3.18) 

2

2

( )
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rm p

p p

d w L
E I
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=  (bending moment at foundation base = 0) (3.19) 
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Similarly, Eq. (3.13) is 2nd order differential equation and there are N ‒ m layers beneath 

the foundation base; therefore, a total of 2(N ‒ m) boundary conditions are needed to 

solve Eq. (3.13). Two boundary conditions are obtained at the foundation base and 

infinite depth as follows: 

 

 

 

The remaining 2(N ‒ m) ‒ 2 boundary conditions are obtained from the continuity of 

variables at the interfaces between the two neighboring soil layers beneath the 

foundation base (i = m+1, …,  N-1) as follows:  

 

 

 

, ( 1) ,( ) ( )ri H i r i H iw z w z+=  (continuity of foundation displacement) (3.20) 

( 1) ,,
( )( ) r i H iri H i

dw zdw z

dz dz

+
=  (continuity of  slope of foundation displacement) (3.21) 

22

( 1) ,,

2 2

( )( ) r i H iri H i

p p p p

d w zd w z
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+
=  (continuity of foundation bending 

moment) 

(3.22) 

33

( 1) , ( 1) ,, ,

( 1)3 3
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p p ri p p r i

d w z dw zd w z dw z
E I t E I t

dz dz dz dz

+ +

+− = −   

(continuity of shear force in foundation) 

(3.23) 

( 1)( ) ( )rm p r m pw L w L+=  (displacement continuity at foundation base) (3.24) 

( ) 0rNw  =  (zero displacement at infinite depth) (3.25) 

, ( 1) ,( ) ( )ri H i r i H iw z w z+=  (continuity of soil displacement) (3.26) 

( 1) ,,

( 1)

( )( )
2 2

r i H iri H i

ri r i

dw zdw z
t t

dz dz

+

+=  (continuity of shear force in soil) (3.27) 
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3.2.7 Governing differential equation for angle of twist function p 

The governing differential equation for the angle of twist function pi(z) in any layer i is 

obtained by equating the coefficients of pi to zero. Two sub-domains exist for the 

function pi(z): within the foundation length (0 ≤ z ≤ Lp) and beneath the foundation (Lp < 

z < ∞).  

 

For the domain within the foundation length (0 ≤ z ≤ Lp), the governing differential 

equation for the function pi(z) is given as 

 

and, the differential equation for the domain beneath the foundation (Lp < z < ∞) is given 

as 

 

where 
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Note that in Eq. (3.31) ki beneath the foundation base is not defined at r = 0 because 

ln(0) is undefined. To avoid such a numerical issue, the lower limit of integration was 

changed from r = 0 to r =  where  is taken as a sufficiently small positive number ( = 

0.001 m is used in this study). 

 

Because Eq. (3.28) is 2nd order differential equation and there are m layers within the 

foundation, a total of 2m boundary conditions are needed to solve Eq. (3.28). First, two 

boundary conditions are obtained at the foundation head and base as follows: 

 

 

The remaining 2m – 2 boundary conditions are then obtained from the continuity 

requirements at the interfaces within the foundation (i =1, 2, …, m-1) as follows:  

 

 

 

Similarly, a total of 2(N ‒ m) boundary conditions are needed to solve Eq. (3.29). Two 

boundary conditions are obtained at the foundation base and infinite depth as follows: 
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(3.33) 

, ( 1) ,( ) ( )pi H i p i H iz z  +=  (continuity of angle of twist of foundation) (3.34) 
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( 1)( ) ( )pm p p m pL L  +=  (continuity of angle of twist at foundation base) (3.36) 
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The remaining 2(N ‒ m) ‒ 2 boundary conditions are obtained from the continuity 

requirements at the interfaces between the two neighboring soil layers beneath the 

foundation base (i = m+1, …,  N-1) as follows: 

 

 

3.2.8 Governing differential equation for lateral displacement decay function r in soil 

The governing differential equation for the lateral displacement decay function r(r) in 

the soil is obtained by equating the coefficients of r to zero and given as  

 

where 
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Boundary conditions for Eq. (3.40) are r(rp) = 1 and r(∞) = 0. 

 

3.2.9 Governing differential equation for lateral displacement decay function   in soil 

The governing differential equation for the tangential displacement decay function (r) 

in the soil is obtained by equating the coefficients of  to zero and given as  

 

where 
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Boundary conditions for Eq. (3.44) are (rp) = 1 and (∞) = 0.  Note that Eqs. (3.40) 

and (3.44) contain both r and , suggesting that these functions are interdependent.  A 

total of six differential equations represent the entire foundation-soil system under 

combined lateral and torsional loads, and they are summarized in Figure 3.2. 
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Figure 3.2 Differential equations in each sub-domain 
 

 

3.2.10 Iterative solution scheme 

Lateral displacement wr and angle of twist p of the foundation and the soil column 

beneath the foundation are obtained by solving Eqs. (3.12), (3.13), (3.28), and (3.29) 

numerically using the finite difference method. To solve them, the soil resistance 

parameters tri, kri, ti and ki must be known, and these t and k parameters are functions 

of r and  , as seen in Eqs. (3.14), (3.15), (3.30).  However, to obtain r and   by 

solving Eqs. (3.40) and (3.44), the parameters rs and s must be known a priori, but 
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they in turn depend on wr and p [refer to Eqs. (3.40) through (3.48)].  Due to the 

interdependence of the soil and foundation differential equations, an iterative solution 

scheme is required in our analytical model. 

 

The iterative solution scheme employed in this study begin by assuming initial values of 

rs parameters (rs1
old, rs2

old and rs3
old) and s parameters (s1

old, s2
old, s3

old 

and s4
old). Furthermore, due to interdependence of r and , we assume initial values 

of   that satisfies the boundary conditions [i.e., (rp) = 1 and (∞) = 0]. With the 

assumed rs parameters and , the function r  is obtained by solving Eq. (3.40). Then, 

using the obtained r  and assumed s parameters, new values of function   is 

calculated by solving Eq. (3.44). Because we now have solution to r and , the soil 

resistance parameters tri, kri, ti and ki are then calculated via numerical integration. 

With the soil resistance parameters tri, kri, ti and ki known, wr and p are obtained by 

solving Eqs. (3.12), (3.13), (3.28), and (3.29). Then, new values of rs parameters 

(rs1
new, rs2

 new and rs3
 new) and s  parameters (s1

 new, s2
 new, s3

 new and s4
 new) are 

calculated using the computed values of wr and p and compared against the assumed 

initial values. If the differences are greater than the prescribed tolerance (a value of 10-5 

was used in this study), iterations are continued with the calculated values of rs and s 

parameters taken as the new guess (rs
old = rs

new and s
old = s

new) until the differences 

between old and new  parameters from two successive iterations fall below the 

prescribed tolerance for all   parameters.  The iterative solution scheme is provided in 

the form of a flow chart in Figure 3.3. 
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Figure 3.3 Flow chart for iterative solution scheme 
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3.3 Results and validations 

Due to the absence of any previous analytical studies for a foundation under 

simultaneous loading of a lateral load and a torque, the validations are done for pure 

torsion and pure lateral load cases. 

 

3.3.1 Lateral analysis 

Basu et al. (2009) developed semi-analytical solutions for laterally loaded foundations in 

multilayered elastic soil using the variational principles and method of initial parameters. 

Our analysis model are derived from the same variational principles but with the 

displacement field resulted from both lateral deflection wr and angle of twist p. 

Consequently, as seen in Eqs. (3.45) through (3.48), the   factors associated with  

become functions of both wr and p. However, with the absence of the angle of twist p, 

the differential equations for wr, r, and  obtained from our study are simplified to the 

same differential equations derived in Basu et al.’s study. Therefore, when zero torque 

is applied in our analysis, the results from our study are expected to be the same as 

those from Basu et al.’s study. To verify this, we compare results from our analysis 

under zero torque against those from Basu et al.’s study for two example cases 

reported in their paper. 

 

The first example considers a drilled shaft, 0.6 m in diameter and 15 m long, with 

Young’s modulus Ep = 24 GPa, embedded in a four-layered soil profile. Properties of the 

four soil layers are as follows: Es1 = 20 MPa, s1 = 0.35, and zH,1 = 2 m for Layer 1; Es2 = 

35 MPa, s2 = 0.25, and zH,2 = 5 m for Layer 2; Es3 = 50 MPa, s3 = 0.20, and zH,3 = 8.3 

m for Layer 3; and Es4 = 80 MPa and s4 = 0.15 for Layer 4 (Layer 4 extends from the 

bottom of the third layer to great depth). The applied lateral load H at the foundation 

head is 300 kN with zero torque (i.e., T = 0).  

 

The second example considers a drilled shaft, 1.7 m in diameter and 40 m long, with 

Young’s modulus Ep = 25 GPa, embedded in a four-layered soil profile. The top three 

layers are located over 0-1.5 m, 1.5-5 m, and 5-13.5 m below the ground surface. The 

fourth layer extends from the bottom of the third layer to great depth. The elastic 
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constants of the four layers are as follows: Es1 = 20 MPa and s1 = 0.35 for Layer 1, Es2 

= 25 MPa and s2 = 0.30 for Layer 2, Es3 = 40 MPa and s3 = 0.25 for Layer 3, and Es4 = 

80 MPa and s4 = 0.20 for Layer 4. A lateral load of H = 3000 kN is applied at the 

foundation head with zero torque. 

 

Profiles of lateral displacement along the shaft obtained from our analysis and the study 

by Basu et al. (2009) for the two examples are presented in Figure 3.4. As expected, 

they show excellent agreements for both examples. For the first example with D = 0.6 m 

and Lp = 15 m, we performed finite element analysis using ABAQUS for comparison 

purpose. Although our analysis yields slightly stiffer response than FEA (perhaps due to 

the assumption of zero vertical soil displacement made in our analysis), it is much more 

efficient than FEA, in addition to being faster, in terms of pre- and post-processing of the 

data due to its analytical nature. 
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(a) 

 

 
(b) 

 Figure 3.4 Comparison with previous studies for a foundation subjected to a pure 
lateral load: (a) D = 0.6 m and Lp = 15 m and (b) D = 1.7 m and Lp = 40 m 
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3.3.2 Torsional analysis 

Misra et al. (2014) developed closed-form solutions of the angle of twist and torque for a 

foundation in multilayered elastic soil subjected to a pure torque using the method of 

initial parameters. We compare results from our analysis against those from Misra et 

al.’s solution for two example cases they reported. 

 

The first example considers a drilled shaft, 1.5 m in diameter and 10 m long (Lp/D = 

6.7), with shear modulus Gp = 9.6 GPa (equivalent to Ep = 25 GPa and p = 0.3), 

embedded in a two-layered soil profile. The first layer extends from ground surface to a 

depth of 5 m with the elastic constants Es1 = 25 MPa and s1 = 0.40, and the second 

layer extends to great depth with Es2 = 100 MPa and s2 = 0.20. The applied torque T at 

the foundation head is 100 kN-m with zero lateral load (i.e., H = 0).  

 

The second example considers a drilled shaft, 1.0 m in diameter and 30 m long (Lp/D = 

30), embedded in a four-layered soil profile. The top three layers are located over 0-5 

m, 5-10 m, and 10-20 m below the ground surface. The fourth layer extends from the 

bottom of the third layer to great depth. The elastic constants of the four layers are as 

follows: Es1 = 25 MPa and s1 = 0.45 for Layer 1, Es2 = 50 MPa and s2 = 0.35 for Layer 

2, Es3 = 75 MPa and s3 = 0.30 for Layer 3, and Es4 = 100 MPa and s4 = 0.25 for Layer 

4. The shear modulus Gp is 9.6 GPa, and torque T = 100 kN-m is applied at the 

foundation head with zero lateral load. 

 

The angles of twist p versus depth z obtained from our analysis and the study by Misra 

et al. (2014) for the two examples are presented in Figure 3.5, and they show excellent 

agreement (note that p beneath the foundation base was not reported in Misra et al.’s 

study and hence not presented in Figure 3.5). Both examples suggest that the angle of 

twist decreases with increasing depth because more soils resist to the applied torque as 

the depth increases. Due to its high embedment depth ratio of Lp/D = 30 for the 

foundation in the four-layered soil deposit, an angle of twist becomes zero at the 

foundation base (see Figure 3.5b). However, the foundation with Lp/D = 6.7 in the two-

layered deposit show more rigid behavior than the foundation with Lp/D = 30, leading to 
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a non-zero value of angle of twist at the foundation base; but p quickly diminishes 

through the soil beneath the foundation base (see Figure 3.5a).  
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(a) 

 

 
(b) 

 Figure 3.5 Comparison with previous studies for a foundation subjected to a pure 
torsion: (a) two-layered deposit and (b) four-layered deposit 
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3.4 Future studies 

The new analysis model developed in this chapter is valid for linear elastic soils only. 

Furthermore, the short duration of the project prohibited a full implementation of solution 

algorithm under the combined loading. However, given that our analysis model shows 

very good agreement with previous studies and FEA under individual loading 

components, the solution algorithm developed in this study can be fully implemented 

and thorough benchmark runs can be performed as future studies. Furthermore, this 

study can be regarded as the groundwork for more advanced analyses such as 

nonlinear analysis that considers degradation of soil modulus using a piecewise-linear 

approach. Also, because the new analysis model is applicable for a multilayered soil, a 

systematic parametric study can be performed to investigate the soil layering effect and 

optimize foundation design.  
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

In this study, we performed a nonlinear finite element analysis (FEA) for a circular 

foundation in a homogeneous clay under combined loading of a lateral load and a 

torque using Tresca model. Failure envelopes in a lateral-torsional loading plane were 

obtained from FEA, and the effect of a torsional load on the lateral capacity of a circular 

foundation was quantified as a function of torque-to-lateral load ratio. We further 

developed a novel, linear-elastic analysis model for a circular foundation, embedded in 

a multilayered soil, under concurrent application of lateral and torsion loads using 

energy principles and variational calculus. 

 

To determine collapse loads, the displacement-controlled swipe loading path method 

was employed in FEA. As a validation of the finite element model, the results from FEA 

under each individual component of load were compared against previous studies and 

theoretical values, which showed an excellent agreement. Analysis results under 

combined loading were presented in the form of failure envelopes with various 

embedment depth ratios (Lp/D) using four definitions of ultimate lateral capacity. For 

foundations with embedment depth ratios less than 3, the normalized failure envelopes 

fell on top of each other regardless of how lateral ultimate capacity was defined, 

suggesting that a single failure envelope can be used for short foundations.  However, 

as the embedment depth ratio increased, the normalized failure envelopes deviated 

from each other and the use of single failure envelope was not justified for Lp/D = 10.  

 

Results from FEA clearly showed that lateral capacity was reduced by the concurrent 

application of torsion. Such reduction effects were quantified as a function of torque-to-

lateral load ratio and presented in the form of design charts. Analysis results further 

indicated that the lateral capacity could be reduced to 63% of maximum value under a 

torque-to-lateral load ratio of about 0.58 m for the soil condition and the range of torque-

to-lateral load ratio (T/H) considered in this study. Whether the lateral capacity will 

continue to decrease beyond the range of T/H considered in this study is unknown at 
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this time and warrants further investigation. Typical ranges of T/H for various 

transportation infrastructures will need to be examined in future studies as well. 

 

We also derived governing differential equations for a circular foundation, embedded in 

a layered soil, subjected to a combination of torsional and lateral loads based on energy 

principles and variational calculus. For the foundation-soil system under concurrent 

application of lateral and torsional loads, a total of six interdependent differential 

equations were obtained. We further developed a numerical algorithm to solve the 

interdependent differential equations using an iterative scheme and tested the algorithm 

under individual loading components. The results from our analysis model under 

individual loading components showed very good agreements with those from previous 

studies and FEA.  

 

The solution algorithm developed in this study can be fully implemented for combined 

loading case and thorough benchmark runs can be performed as future studies. 

Furthermore, the analysis model developed in this study can be regarded as the 

groundwork for more advanced models such as nonlinear analysis model that considers 

degradation of soil modulus using a piecewise-linear approach. Also, because the new 

analysis model is applicable for a multilayered soil, a systematic parametric study can 

be performed to investigate the soil layering effect and optimize foundation design.  
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