
 

 

 

 

 

 

Economic Impacts of Multi-Modal Transportation 
Network Recovery 

 
 

KASH BARKER, Ph.D. 

 
 

SPTC17.1-03-F 

 
 

 

Southern Plains Transportation Center 
201 Stephenson Parkway, Suite 4200 
The University of Oklahoma 
Norman, Oklahoma 73019 



i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible for the 
facts and accuracy of the information presented herein. This document is disseminated 
under the sponsorship of the Department of Transportation University Transportation 
Centers Program, in the interest of information exchange. The U.S. Government 
assumes no liability for the contents or use thereof. 
  



ii 

TECHNICAL REPORT DOCUMENTATION PAGE
1.  REPORT NO. 
      SPTC17.1-03-F 

2.  GOVERNMENT ACCESSION NO. 
 

 
3.  RECIPIENTS CATALOG NO. 
 

 4.  TITLE AND SUBTITLE 
Economic Impacts of Multi-Modal Transportation Network 
Recovery 

 
5.  REPORT DATE

 

October 15, 2018 
 
6.  PERFORMING ORGANIZATION CODE 
 

 7.  AUTHOR(S) 

Kash Barker 
 

 8.  PERFORMING ORGANIZATION REPORT 
 

 9.  PERFORMING ORGANIZATION NAME AND ADDRESS 
School of Industrial and Systems Engineering 
The University of Oklahoma 
202 W. Boyd St., Rm. 124 
Norman, OK 73019 

10.  WORK UNIT NO. 

 
11.  CONTRACT OR GRANT NO. 
DTRT13-G-UTC36  

12. SPONSORING AGENCY NAME AND ADDRESS 
Southern Plains Transportation Center 
201 Stephenson Pkwy, Suite 4200        
The University of Oklahoma 
Norman, OK 73019  

13.  TYPE OF REPORT AND PERIOD COVERED 
Final 
October 15, 2017  –  May 1, 
2018 
14.  SPONSORING AGENCY CODE 
 

15.  SUPPLEMENTARY NOTES 

 University Transportation Center 
16. ABSTRACT 

Recent US planning documents focus on transportation network preparedness, 
emphasizing “securing and managing flows of people and goods” along transportation 
networks. Presidential Policy Directive 21 states that critical infrastructure “must be 
secure and able to withstand and rapidly recover from all hazards.” This combination of 
the abilities to (i) withstand the effects of a disruption and (ii) recover timely is often 
referred to as resilience. In a recently completed SPTC project, we examined 
transportation network component importance from the perspective of the vulnerability 
of commodity flows and the interdependent, multi-regional, multi-industry impact of the 
disruption of those commodity flows. Naturally a more comprehensive view of 
transportation network resilience must extend from the vulnerability of transportation 
assets to their post-disruption recovery. In this project report, we build upon the prior 
SPTC project to propose an optimization formulation to recover disrupted components 
in the multi-modal transportation network with multi-industry impacts in mind. The 
primary contribution of this work is the relating network recoverability and 
interdependent impact to individual network components – an important perspective not 
currently available in the literature. That is, how can the complementary view of 
economic impact assist transportation planners in understanding (i) what order of 
components to repair and (ii) how to schedule work crews to perform this repair?  
17.  KEY WORDS 
Recovery, Resilience, Economic impact, 
Commodity flows, Multi-regional, Planning 

18.  DISTRIBUTION STATEMENT 
No restrictions.  This publication is available 
at www.sptc.org and from the NTIS. 

19. SECURITY CLASSIF. (OF THIS REPORT) 

  Unclassified 

20. SECURITY 
CLASSIF. (OF THIS 
PAGE) 

Unclassified 

21. NO. OF PAGES 

    38 

22. PRICE 
 



iii 

 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
  LENGTH   

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

  AREA   
in

2
 square inches 645.2 square millimeters mm

2
 

ft
2

 square feet 0.093 square meters 
m

2 

yd
2

 square yard 0.836 square meters 
m

2 

ac acres 0.405 hectares ha 

mi
2
 square miles 2.59 square kilometers km

2
 

 
fl oz 
gal 

ft
3 

yd
3

 

VOLUME 

fluid ounces 29.57 milliliters 
gallons 3.785 liters 
cubic feet 0.028 cubic meters 

cubic yards  0.765 cubic meters 

NOTE: volumes greater than 1000 L shall be shown in m
3

 

 
mL 
L 

m
3 

m
3 

 MASS  

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

 
o
F

 
TEMPERATURE (exact degrees) 

Fahrenheit  5 (F-32)/9 Celsius 
or (F-32)/1.8 

 
o
C

 

 ILLUMINATION  

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m
2

 cd/m
2

 

 FORCE and PRESSURE or STRESS  

lbf poundforce 4.45 newtons N 

lbf/in
2

 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
 LENGTH  

mm millimeters 0.039 inches in 

m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

 AREA  

mm
2
 square millimeters 0.0016 square inches in

2
 

m
2 square meters 10.764 square feet ft

2
 

m
2 square meters 1.195 square yards yd

2
 

ha hectares 2.47 acres ac 

km
2
 square kilometers 0.386 square miles mi

2
 

 VOLUME  

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m
3 cubic meters 35.314 cubic feet ft

3
 

m
3 cubic meters 1.307 cubic yards yd

3
 

 MASS  

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

 TEMPERATURE (exact degrees)  

o
C

 Celsius 1.8C+32 Fahrenheit o
F

 

 ILLUMINATION  

lx lux 0.0929 foot-candles fc 

cd/m
2

 candela/m
2 

0.2919 foot-Lamberts fl 

 FORCE and PRESSURE or STRESS  

N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square inc h lbf/in
2

 

*SI is the symbol for the International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 03) 
  



iv 

 
 
 
 
 
 

ECONOMIC IMPACTS OF MULTI-MODAL 
TRANSPORTATION NETWORK RECOVERY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final Report 
October 15, 2018 
 
Kash Barker, Ph.D. 
 
 
 
 
 
 
 
Southern Plains Transportation Center 
201 Stephenson Parkway, Suite 4200 
The University of Oklahoma 
Norman, OK 73019 
 
  



v 

TABLE OF CONTENTS 

 
1. Introduction .............................................................................................................. 1 

2. Modeling Freight Network Restoration ..................................................................... 3 

2.1. Step 1: Freight Movement and Disruption .......................................................... 4 

2.2. Step 2: Multi-Regional, Multi-Industry Economic Impact .................................... 5 

2.2.1. Input-Output Model and its Multi-Regional Extension .................................. 6 

2.2.2. Inoperability Input-Output Model and its Multi-Regional Extension .............. 7 

2.2.3. MRIIM Application to Freight Disruption ...................................................... 8 

2.2.4. Modeling Remaining Supply ........................................................................ 9 

2.2.5. Modeling Unmet Demand ............................................................................ 9 

2.3. Step 3: Planning for Restorative Capacity ........................................................ 11 

3. Illustrative Example: Multi-Modal Freight Transport in Oklahoma and Surrounding 
Region ........................................................................................................................... 14 

3.1. Step 1 Applied: Freight Movement and Disruption ........................................... 17 

3.2. Step 2 Applied: Multi-industry Impact ............................................................... 18 

3.3. STEP 3 Applied: Planning for Restorative Capacity ......................................... 21 

4. Conclusions ........................................................................................................... 26 

5. References ............................................................................................................. 27 

 
 
 
  



vi 

LIST OF FIGURES 
 
Figure 1. Enhancing network resilience via restorative capacity 𝝋𝒕. ............................... 2 

Figure 2. The performance components of restorative capacity (adapted from [22]). ..... 3 
Figure 3. Three-step approach to devise network recovery with multi-regional, multi-
industry impacts. ............................................................................................................. 4 

Figure 4. Representations of (a) spatial location of multi-modal nodes in Oklahoma and 
surrounding states, and (b) the connected transportation network. ............................... 15 
Figure 5. Maximum economic loss associated with each industry in each region. ........ 20 
Figure 6. Total system economic resilience trajectory via recovery actions. ................. 22 
Figure 7. Economic resilience trajectory (a) for each industry and (b) in each region for 
Scenario 1. .................................................................................................................... 23 
Figure 8. Economic resilience trajectory (a) for each industry and (b) in each region for 
Scenario 2. .................................................................................................................... 23 
Figure 9. Economic resilience trajectory (a) for each industry and (b) in each region for 
Scenario 3. .................................................................................................................... 23 
Figure 10. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, 
(b) Illinois, (c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 1.......................... 24 
Figure 11. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, 
(b) Illinois, (c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 2.......................... 25 

Figure 12. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, 
(b) Illinois, (c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 3.......................... 25 

 
  



vii 

LIST OF TABLES 
 
Table 1. Spatial location of multi-modal nodes in Oklahoma and surrounding states. .. 16 
Table 2. Names and NAICS codes for the primary industries using the network. ......... 16 
Table 3. Combined monthly demands/supplies of each industry (column) at 
supply/demand nodes (rows) connecting through the network (in tons). ....................... 17 
Table 4. Tons of remaining commodities (by industry) at suppliers with the removal of 
network components. .................................................................................................... 19 
Table 5. Tons of unsatisfied commodities (by industry) at demand nodes with the 
removal of network components. .................................................................................. 19 
Table 6. Maximum total economic loss across all industries and regions for each 
disruption scenario. ....................................................................................................... 20 

Table 7. Maximum economic loss for each region for each disruption scenario. .......... 20 

Table 8. Maximum economic loss for each industry for each disruption scenario. ........ 20 

Table 9. Maximum economic loss for each industry by each region for each disruption 
scenario. ........................................................................................................................ 21 
 
 
  



viii 

EXECUTIVE SUMMARY 
 
Among the critical infrastructures defined by the US government are transportation 
networks, which are vital to a society and subject to natural hazards, human-made 
events, or common failures. The ultimate usefulness of understanding transportation 
network disruptions is not just a descriptor of physical damage, but of economic 
interruption due to infrastructure inoperability. As such, discussions of transportation 
network recovery should account for multi-industry impacts.  
 
In a recently completed Southern Plains Transportation Center (SPTC) project, we 
examined transportation network component importance from the perspective of the 
vulnerability of commodity flows and the interdependent, multi-regional, multi-industry 
impact of the disruption of those commodity flows. If resilience is defined to be the 
combination of a system’s ability to (i) withstand the effects of a disruption (or minimal 
vulnerability) and (ii) recover timely (or enhanced recoverability), then naturally a more 
comprehensive view of transportation network resilience must extend from the 
vulnerability of transportation assets to their post-disruption recovery.  
 
In this report, we build upon the prior SPTC project to propose an optimization 
formulation to recover disrupted components in the multi-modal transportation network 
with multi-industry impacts in mind. The primary contribution of this work is the relating 
network recoverability and interdependent impact to individual network components – 
an important perspective not currently available in the literature. That is, how can the 
complementary view of economic impact assist transportation planners in 
understanding (i) what order of components to repair and (ii) how to schedule work 
crews to perform this repair? This could assist local municipalities for short-term 
recovery actions (e.g., debris removal) and state-level entities for long-term actions 
(e.g., rebuilding damaged assets).  
 
Several reasons make this work important to the region, including: (i) Oklahoma’s 
central role in transporting goods via a multi-modal transportation network (interstate 
highways, railways, and inland waterways), and (ii) as the multi-modal networks are 
prone to disruption and delay (and will only continue to do so as long-term climate 
related degradation can lead to more disruptions under smaller scale disasters), 
understanding the role of recovering individual links in regional economic productivity is 
important. 
 
It is recommended that the Oklahoma Department of Transportation consider the 
models provided in this report to supplement and complement existing approaches 
when considering investments to recover disrupted components of the multi-modal 
transportation infrastructure in the state. The methods proposed in this report are 
illustrated with data-driven studies from Oklahoma, though they are at levels of 
granularity that may not be directly conducive to investments about specific components 
(e.g., a particular bridge).  
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1. INTRODUCTION 
 
Freight transportation infrastructure, including ports, intermodal stations, interstate 
highways and railways, is a quickly growing part of productivity of industries in the US 
due to its support of regional and national economy. In recent decades, the operability 
of freight transportation infrastructure has been threatened by numerous disruptive 
events, whether natural hazards, human-made events, or common failures. And all of 
these disruptions interrupted commodity flows throughout the affected regions and 
adversely impacted economic productivity. Many recent large-scale examples 
highlight the growing need to deal with disruptions: the great Mississippi and Missouri 
flood in 1993 caused delays and cancelations for several railroad segments[1]; Hurricane 
Katrina in 2005 adversely impacted the infrastructure system, along with economic 
productivity, in Louisiana, Mississippi, and Alabama[2]; and Hurricane Sandy affected the 
East Coast from Florida to Maine, disabling transportation networks including roads, 
public transit, port terminal facilities, and the harbor in the New York/ New Jersey 
area[3].  
 
In response to the growing vulnerability of critical infrastructure given their exposure to 
natural hazards, malevolent attacks, and the challenges of aging, the Presidential Policy 
Directive on Critical Infrastructure Security and Resilience (PPD-21)[4] was established 
to focus national efforts to enhance the critical infrastructure network resilience. In many 
U.S. preparedness planning documents, resilience is defined as the ability of the 
network to withstand, adapt, and recover from disruptive events[5]. Based on Barker et 
al.[6], network resilience can be defined as two fundamental dimensions: (i) vulnerability, 
or the lack of ability of a network to withstand disruptive events and maintain its 
maximum possible level of performance in the immediate aftermath of disruptions, and 
(ii) recoverability, or the ability of the network to return to a desired level of performance 
within a recovery time horizon. These two dimensions describe similar components of 
robustness and rapidity in the resilience triangle literature[7]. Similarly, Vugrin and 
Camphouse[8] define the resilience capacity of a system as a function of three 
capacities: (i) absorptive capacity, or to the extent a network is able to absorb shocks 
from disruptive event, (ii) adaptive capacity, or the extent to which a system can quickly 
adapt after a disruption by temporary means, and (iii) restorative capacity, or the extent 
to which the system can recover from a disruption or be reconstructed in the long-term. 
The combination of absorptive and adaptive capacities can be thought of as analogous 
to reducing vulnerability, and restorative capacity is analogous to recoverability[9]. Figure 
1 highlights the relationship between (i) vulnerability and recoverability and (ii) 
absorptive, adaptive, and restorative capacities. 
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Figure 1. Enhancing network resilience via restorative capacity 𝝋(𝒕). 

 
This work focuses on enhancing network resilience via restorative capacity. Most work 
in infrastructure network recovery focuses on the restoration process as an effort to 
minimize unsatisfied demands in each time period. Nurre et al.[10] introduce a design 
and scheduling formulation that maximizes the total weighted flow reaching to demand 
nodes in each time period of the recovery horizon. Miller-Hooks et al.[11] propose 
restoring disrupted network performance as a function of satisfied demand in each time 
period of the restoration horizon from the perspective of network resilience. Sharkey et 
al.[12] expand the model by Nurre et al.[10] to recover interdependent infrastructure 
networks. In terms of optimizing network connectivity, Aksu and Ozdamar[13] formulate a 
multi-vehicle problem to recover blocked links that are critical for maintaining network 
connectivity under limited recovery resources. Celik et al.[14] also plan debris cleaning 
processes with the aim of recovering transportation network connectivity under 
uncertain nature of the problem. Kasaei and Salman[15] propose an arc routing problem 
that reconnects network components within a recovery time horizon.  
 
Acknowledging that infrastructure networks do not exist for their own sake but serve 
society, particularly as a means to enable economic productivity, this work expands 
upon the recent literature in optimizing infrastructure network recovery via demand 
satisfaction or network connectivity to accounting for multi-industry economic impacts. 
We focus on measuring the effectiveness of restorative capacity on economic 
productivity with the proportional value of the maximum loss that can be avoided by 
recovery decisions, adapted from Rose[16]. This is depicted graphically in Figure 2 and 
mathematically in Eq. (1), where %Δ𝐷𝑌 represents the economic loss given that some 
recovery action is taken and %Δ𝐷𝑌max  represents the maximum economic loss due to 
the disruption while no action is taken. This quantitative approach is used in this study 
to define a performance measure for the system’s ability to restore its functionality 
(%Δ𝐷𝑌max − %Δ𝐷𝑌) after a disruption. In this work, %Δ𝐷𝑌 and %Δ𝐷𝑌max refer to 
changes in total output produced in an economy of interconnected industries. In this 
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sense, these measures are analogous to the concept of inoperability, a well-studied 
topic in the literature of interdependent industries and infrastructures[17]-[21]. Inoperability, 
𝑞, quantifies the proportional extent to which a system (e.g., economic system) is not 
functioning in an as-planned manner, thereby providing a metric to describe the 
behavior of a system regardless of the measure describing its proper function (e.g., flow 
capacity, connectivity, production output). As further discussed subsequently, this 
measure of restorative capacity is extended to represent maximum loss that is avoided 
in each time period by devising recovery actions till the full system restoration. 
 

 

Figure 2. The performance components of restorative capacity (adapted from [22]). 

 

 

2. MODELING FREIGHT NETWORK RESTORATION 
 
A multi-modal freight transportation network can be considered a facilitator of economic 
productivity as it enables the flow of commodities among industries located in multiple 
regions. Following a disruptive event, obstacles in commodity movement ripples 
throughout the interconnected industries, as input to one industry may be disrupted 
output from another industry, thus affecting the entire (regional) economy. As such, we 
seek recovery decisions that enable economic productivity across multiple industries. 
We propose an optimization framework to devise recovery decision by integrating (i) a 
multi-commodity network flow model of freight movement, (ii) a risk-based 
interdependency model of multi-regional, multi-industry impacts, and (iii) an objective 
function that addresses restorative capacity with a measure of economic 
resilience[16],[22],[23]. The proposed optimization model is developed following a three-step 
approach, as illustrated in Figure 3. 
 
 

 restorative capacity =
%ΔDYmax − %ΔDY

%ΔDYmax
 (1) 
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Figure 3. Three-step approach to devise network recovery with multi-regional, multi-industry 
impacts. 

 

2.1. STEP 1: FREIGHT MOVEMENT AND DISRUPTION  
The multi-modal freight transportation network of interest in this work will be modeled 
with a typical multi-commodity network flow (MCNF) problem. MCNF problems, which 
minimize the cost of the flow of multiple commodities across a capacitated network of 
supply and demand nodes, arise in a wide variety of applications, including 
telecommunications[24], warehousing[25], and multi-modal transportation networks[26],[27], 
among others.  
 
To study the vulnerability of a multi-modal freight transportation network, which serves 
as a facilitator of 𝑛 interacting industries, the topology of the network and corresponding 
supply and demand nodes must be extracted. The conventional MCNF problem for a 
network 𝐺(𝑁, 𝐿) with a set of nodes, 𝑁, each of which could be home to either suppliers 
or consumers of multiple commodities (K), or just an intermediate node, and a set of 
links, 𝐿, is formulated in Eq. (2). The flow of commodity 𝑘 on link (𝑖, 𝑗) is represented 

with 𝑓𝑖𝑗
𝑘, and the cost of shipment for commodity k on link (𝑖, 𝑗) is 𝑤𝑖𝑗

𝑘 . The capacity of 

link (𝑖, 𝑗) is represented with 𝑢𝑖𝑗, and the supply/demand of commodity 𝑘 at node 𝑖 is 

represented with 𝑏𝑖
𝑘, defining the “bundle” and “mass balance” constraints in Eq. (2), 

respectively. Note that 𝑏𝑖
𝑘 is positive for supply nodes, negative for demand nodes, and 

zero for transshipment (or intermediate) nodes. The capacity of each link is considered 
as a shared constraint for all commodities flowing on the link.    
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min ∑ ∑ 𝑤𝑖𝑗
𝑘 𝑓𝑖𝑗

𝑘

𝑘(𝑖,𝑗)∈ 𝐿

s. t. ∑ 𝑓𝑖𝑗
𝑘

𝑘

≤  𝑢𝑖𝑗  ∀ (𝑖, 𝑗) ∈ 𝐿

 ∑ 𝑓𝑖𝑗
𝑘

(𝑖,𝑗)∈ 𝐿

−  ∑ 𝑓𝑗𝑖
𝑘

(𝑗,𝑖)∈ 𝐿

=  𝑏𝑖
𝑘  ∀ 𝑖 ∈ 𝑁, 𝑘 = 1, … , 𝐾

 𝑓𝑖𝑗
𝑘 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑘 = 1, … , 𝐾    

  (2) 

 
In fact, a generic MCNF model provides a means to formulate the supply-demand 
network in which a multi-modal freight transportation network connects industries and 
enables trading relationships and interactions. From a tactical point of view, the 
integration of (i) business economic sectors and (ii) their supply capabilities or demand 
requirements together with (iii) the structure of the transportation network can result in a 
minimum cost MCNF model that can route the commodities from suppliers to the 

demand nodes via 𝑓𝑖𝑗
𝑘, collectively representing the flow of commodities on the links of a 

baseline (undisrupted) network.  
 
A scenario-based removal of network components known as interdiction [Murray et al. 
2008] is a common theme in modeling and analysis of supply-demand network 
disruption. Interdiction analyses encompass a wide range of possible disruptions that 
may vary with respect to spatial scales, correlation of disruptive events, sequence of 
failures, and event duration. In the case of any disruption modeled as the removal of a 
network component or a set of components (or a drop in the functionality of the network 
modeled as reduction of link capacities), the consequences are calculated by deducting 
the commodity flows on the affected links from the baseline flow, as calculated in Eq. 

(1). Slack variable 𝑆𝑖𝑡
𝑘′

 reflects the quantity of commodity 𝑘′ at node 𝑖  at time 𝑡 that is 

either (i) undelivered and remaining with the suppliers or (ii) unsatisfied demand 
experienced by consumers. This slack variable will be used subsequently to drive the 
calculation of inoperability among multiple industries. There are multiple sets of 
commodities, and it is assumed that each set represents the output of a lone industry, 
and interdependent inoperability propagated through a set of industries caused by 
unsatisfactory demands/supplies will be modeled in the next section.  
 

2.2. STEP 2: MULTI-REGIONAL, MULTI-INDUSTRY ECONOMIC IMPACT  
To model the interdependent adverse effect of commodity flow disruption on multiple 
industry sectors located in different regions, we use a multi-regional extension of 
Inoperability Input-Output Model (IIM). The IIM is an extension of the traditional 
economic input-output model[28], a linear model of the commodity flows in a set of 
interconnected industries. This section provides background on the risk-based multi-
regional interdependency model used to measure the economic impacts of a 
transportation disruption in terms of remaining commodities at suppliers and unmet 
demands at demand nodes. 
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2.2.1. Input-Output Model and its Multi-Regional Extension  
The input-output model has been widely accepted as a useful model for analyzing the 
interdependent connections among industries[29], and the use of the input-output 
enterprise for studying disruptions was among the 10 Most Important Accomplishments 
in Risk Analysis: 1980-2010[30]. In the traditional input-output model[28], the entire 
economy is considered as a group of 𝑛 interacting industries, each producing a single 
commodity. Under a static equilibrium, the total output of industry (or economic sector) 𝑘 
is distributed (i) to other industries for use as input to production and (ii) to final 
consumers to satisfy external (consumption) demand. Under a proportionality 

assumption, this equilibrium condition is described with 𝑥𝑘 = ∑ 𝑧𝑘ℎ
𝐾
ℎ=1 + 𝑐𝑘, where 𝑥𝑘 is 

the total output of industry 𝑘, 𝑧𝑘ℎ is the input of industry 𝑘 to the production of industry ℎ 

(intermediate consumption), and 𝑐𝑘  is the external (final) consumption for industry 𝑘’s 
output. The intermediate consumption, 𝑧𝑘ℎ, is assumed to be proportional to the output 

of industry ℎ (ℎ ∈ {1, … , 𝐾} and ℎ ≠ 𝑘), expressed as 𝑧𝑘ℎ =  𝑎𝑘ℎ𝑥ℎ. The common form of 
the Leontief input-output model is expressed in Eq. (3), where x is an 𝑛 × 1 vector of 

industry production outputs, 𝑎𝑘ℎ is proportion of industry 𝑘’s input to ℎ, with respect to 
total production of industry ℎ (which form 𝑛 × 𝑛 industry-by-industry matrix of 
interdependency coefficients A), and 𝐜 is an 𝑛 × 1 vector of final consumption. The 
model shows that total production is made up to satisfy industry-to-industry intermediate 
production (Ax) and final consumption (𝐜). 
 

 
The traditional input-output model has been extended to represent multi-regional 
economic interdependency[29]. A regional input-output matrix 𝐀𝑟  is developed by 
modifying the elements of the 𝐀 matrix. As shown in Eq. (4), 𝑙𝑘

𝑟 , referred to as a  location 

quotient, is defined to indicate how well industry 𝑘’s production satisfies the regional 
demand.   
 

 
The location quotient, 𝑙𝑘

𝑟 , is mathematically defined in Eq. (5), where 𝑥𝑘
𝑟 is the output of 

industry 𝑘 in region 𝑟, 𝑥total
𝑟  is the output of all industries in region 𝑟, 𝑥𝑘 is the output of 

industry 𝑘 at the national level, and 𝑥total is the output of all industries at the national 
level. 
 

 
As discussed by Isard et al.[31], in multi-regional analysis, it is desired to consider the 
effects of interdependencies due to the exchange of goods and services between 
regions. The authors extended the input-output model to incorporate inter-regional 
commodity exchanges by defining an inter-regional relationship as 𝑧𝑘ℎ

𝑟𝑟′ = 𝑧𝑘
𝑟𝑟′𝑧ℎ

𝑟′, where 

𝑥𝑘 = ∑ 𝑧𝑘ℎ

𝐾

ℎ=1

+  𝑐𝑘 ⇒ x = Ax + 𝐜 ⇒ 𝐱 = [𝐈 − 𝐀]−1𝐜 (3) 

𝑎𝑘ℎ
𝑟 {

𝑙𝑘
𝑟𝑎𝑘ℎ,    𝑙𝑘

𝑟 < 1

𝑎𝑘ℎ,       𝑙𝑘
𝑟 ≥ 1

 (4) 

𝑙𝑘
𝑟 =  

𝑥𝑘
𝑟 𝑥total

𝑟⁄

𝑥𝑘 𝑥total⁄
 (5) 
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𝑧𝑘ℎ
𝑟𝑟′ is the amount of output of industry 𝑘 in region 𝑟 that is used by industry ℎ in region 

𝑟′, 𝑧𝑘
𝑟𝑟′ is the amount of output of industry 𝑘 that goes from region 𝑟 to 𝑟′, and 𝑧ℎ

𝑟′is the 

amount of output of industry 𝑘 coming from all regions into 𝑟′ that is used as input by 
industry ℎ. Isard et al. argued that 𝑧𝑘

𝑟𝑟′ is proportional to 𝜉𝑘
𝑟′, the total amount of 

commodities related to industry 𝑘 that come into region 𝑟′  from all other regions (i.e., 
𝑧𝑘

𝑟𝑟′ = 𝜓𝑘
𝑟𝑟′𝜉𝑘

𝑟′). Also, 𝑧𝑘ℎ
𝑟′  is proportional to the output of the industry ℎ in region 𝑟′ (i.e., 

𝑧𝑘ℎ
𝑟𝑟′ = 𝑎𝑘ℎ

𝑟′ 𝑥ℎ
𝑟′). Hence, the inter-regional technical coefficient is defined with Eq. (6). 

 

 
Ultimately, an inter-regional input-output model is proposed in Eq. (7), the details of 
which can be found in Isard et al.[31] and Miller and Blair[29]. 
 

 
The multi-regional, multi-industry input-output model is provided in Eq. (8). Each sub-
matrix 𝚿𝑟𝑟′ is a 𝐾 ×  𝐾 diagonal matrix whose diagonal elements are the proportions of 
all commodities 𝜓𝑘

𝑟𝑟′, ∀ 𝑘 ∈ {1, … , 𝐾} that originated in region 𝑟 and are consumed in 

region 𝑟′.  Each sub-matrix 𝚿𝑟𝑟′, referred to as the trade coefficient matrix, are 
parametrized using the Commodity Flow Survey database that documents the annual 
flow of goods in US dollars using multi-modal transportation across different regions in 
the United States, collected by the Bureau of Transportation Statistics[32].  
 

 

2.2.2. Inoperability Input-Output Model and its Multi-Regional Extension  
While the input-output model describes the connections between the interdependent 
industries in terms of commodity exchange, Santos and Haimes[17] developed an 
extension, the Inoperability Input-Output Model (IIM), to represent how a proportional 
disruption propagates through interconnected industries. The IIM is defined based on 
two metrics to assess the risk of disruptions in infrastructure networks[33],[34]: (i) 
inoperability for industry 𝑘, 𝑞𝑘, defined as the extent to which industries are 
unproductive, and (ii) final consumption perturbation 𝑐𝑘

⋆. The IIM shows how normalized 

production losses propagate through interconnected industries with a normalized 
interdependency matrix 𝐀⋆. As formulated in Eq. (9), the IIM describes relationships 
among 𝐾 industries, and models the propagation of the inoperability in a group of 𝐾 
interconnected industries.  
 

 

𝑎𝑘ℎ
𝑟𝑟′ =  

𝑧𝑘
𝑟𝑟′ 𝑧𝑘ℎ

𝑟′

𝜉𝑘
𝑟′  𝑥ℎ

𝑟′ = 𝜓𝑘
𝑟𝑟′𝑎𝑘ℎ

𝑟′  (6) 

𝑥𝑘
𝑟 = ∑ ∑ 𝜓𝑘

𝑟𝑟′𝑎𝑘ℎ
𝑟′ 𝑥ℎ

𝑟′

𝐾

ℎ=1

𝑅

𝑟′=1

+  ∑ 𝜓𝑘
𝑟𝑟′𝑐𝑘

𝑟

𝑅

𝑟′=1

 (7) 

[
𝑥1

⋮
𝑥𝑅

] = [
𝛹11 ⋯ 𝛹1𝑅

⋮ ⋱ ⋮
𝛹𝑅1 ⋯ 𝛹𝑅𝑅

] [
𝐴1 ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝐴𝑅

] [
𝑥1

⋮
𝑥𝑅

] + [
𝛹11 ⋯ 𝛹1𝑅

⋮ ⋱ ⋮
𝛹𝑅1 ⋯ 𝛹𝑅𝑅

] [
𝑐1

⋮
𝑐𝑅

] (8) 

𝐪 = 𝐀⋆𝐪 + 𝐜⋆ ⇒ 𝐪 = [𝐈 − 𝐀⋆]−1𝐜⋆ (9) 
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Vector 𝐪 is a vector of industry inoperability describing the proportional extent to which 
as-planned productivity or functionality is not realized following a disruptive event. 
Inoperability for industry 𝑘 is defined in Eq. (10), where as-planned total output is 
represented with 𝑥̂𝑘 and degraded total output resulting from a disruption is represented 

with 𝑥̃𝑘. An inoperability of 0 suggests that an industry is operating at normal production 
levels, while an inoperability of 1 represents the situation in which an industry is 
completely inoperable. 
 

 
A normalized form of the original 𝐀 matrix describing the extent of interdependence 

among a set of industries or sectors is defined as 𝐀⋆. The row elements of 𝐀⋆ indicate 
the proportion of additional inoperability that are contributed by a column industry to the 
row industry, shown in Eq. (11). 
 

 
Final consumption perturbation for industry k, 𝑐𝑘

⋆, represents the change in final 

consumption for industry k due to disruptive events. The calculation of 𝐜⋆, a vector of 
normalized final consumption reduction is provided in Eq. (12), where the elements of 𝐜⋆ 
represent the difference in as-planned final consumption ĉ𝑘 and perturbed final 

consumption c̃𝑘 divided by as-planned production. It quantifies the reduced final 
consumption for industry 𝑘 as a proportion of total as-planned output. 
 

𝑐𝑘
⋆ = (𝑐̂𝑘 − 𝑐̃𝑘) 𝑥̂𝑘⁄  ⟺ 𝐜⋆ = [diag(𝐱̂)]−1(𝐜̂ − 𝐜̃) (12) 

 
Crowther and Haimes[35] followed the same principles in developing multi-regional input-
output model to propose the Multi-Regional Inoperability Input-Output Model (MRIIM) by 
integrating Eqs. (8) and (9). In the MRIIM, provided in Eq. (13), each of the 𝐾 ×  𝐾 sub-

matrices 𝚿⋆𝑟𝑟′, ∀ 𝑟, 𝑟′ ∈ {1,2, … , 𝑅} is normalized by the diagonal regional output 
matrices diag(𝑥𝑟), ∀ 𝑟 ∈ {1,2, … , 𝑅}. 
 

 
Total economic losses, the combination of direct and indirect losses, can be calculated 
by multiplying each industry’s production level by its inoperability level: for industry 𝑘, 

𝑄𝑘 = 𝑥𝑘𝑞𝑘, or for the entire economy of industries, 𝑄 = 𝐱𝑇𝐪.  A multi-regional extension 
of these calculations can measure the total economic loss in the region under study. As 
such, planning decisions can be made with respect to some combination of inoperability 
or economic impact at the industry level, the multi-industry level, or for different regions. 
 

2.2.3. MRIIM Application to Freight Disruption  
Following a disruption in freight transportation infrastructure, commodity movement is 
assumed to be degraded and the whole system of interconnected industries is faced 

𝑞𝑘 = (𝑥̂𝑘 − 𝑥̃𝑘) 𝑥̂𝑘⁄  ⟺ 𝐪 = [diag(𝐱̂)]−1(𝐱̂ − 𝐱̃) (10) 

𝑎ℎ𝑘
⋆ = 𝑎ℎ𝑘(𝑥̂ℎ 𝑥̂𝑘⁄ )  ⟺ 𝐀⋆ = [diag(𝐱̂)]−1𝐀[diag(𝐱̂)] (11) 

[
𝐪1

⋮
𝐪𝑅

] = [
𝚿⋆11 ⋯ 𝚿⋆1𝑅

⋮ ⋱ ⋮
𝚿⋆𝑅1 ⋯ 𝚿⋆𝑅𝑅

] [
𝐀⋆1 ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝐀⋆𝑅

] [
𝐪1

⋮
𝐪𝑅

]  + [
𝚿⋆11 ⋯ 𝚿⋆1𝑅

⋮ ⋱ ⋮
𝚿⋆𝑅1 ⋯ 𝚿⋆𝑅𝑅

] [
𝐜⋆1

⋮
𝐜⋆𝑅

] (13) 
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with a failure in the form of remaining commodities at suppliers and unmet demands at 
consumers. The propagation of the failure throughout interconnected industries located 
in multiple region is formulated using MRIIM. Santos and Haimes[17] proposed a 
demand-reduction IIM that has been successfully employed to study multi-industry 
impacts of perturbations in supply and demand (e.g., [36]-[39]). Here, the failure is 
translated into the two IIM metrics of inoperability and final consumption perturbation 
based on a demand-reduction MRIIM implemented by Pant et al.[37] in modeling supply 
and demand perturbation caused by an inland waterway port closure. In the proposed 
approach, the remaining commodities at suppliers after a disruption are considered as 
final consumption perturbations. And the effects of the failure at demand nodes in the 
form of unmet demands is modeled as a “forced” demand reduction, assuming that a 
disruption decreases the supply of a commodity for a demand node while the final 
external consumption remains virtually unaffected. In such a case, the demand nodes 
temporarily sacrifice their internal need for that commodity until it returns to its as-
planned supply level, and a surrogate for supply reduction is calculated from the 
combination of “forced” internal consumption and an output inoperability. 
 

2.2.4. Modeling Remaining Supply  
The remaining commodities at a supplier of commodity 𝑘 located in node 𝑖 at region 𝑟 

will be considered as a reduction in final consumption. Final consumption for industry 𝑘 
includes commodities consumed by industry 𝑘 itself internally, or (𝑐̂𝑘

𝑟)int, and the 

amount of external consumption that is exported through the network 𝐺, or (𝑐̂𝑘
𝑟)𝐺, as 

modeled in Eq. (14). It is assumed that the disruption results in losses of commodity 
flows only through the network, so industry production activities unrelated to the network 
experience no direct failure though might be affected indirectly due to an interdependent 
loss of economic productivity. When a disruption causes difficulties for industry 𝑘 in 
region 𝑟 only in exporting commodities, it experiences commodities remaining at supply 

nodes in region 𝑟 totaling ∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁+
𝑟 ∩𝑁𝑘) , where 𝑁+

𝑟 represents the set of nodes that are 

home to suppliers in region 𝑟. This is shown in Eq. (15). As such, the final consumption 
perturbation for industries that experience difficulties only in exporting commodities is 
modeled as the amount of slack divided by as-planned industry output in Eq. (16). 
 

𝑐̂𝑘
𝑟 = (𝑐̂𝑘

𝑟)int + (𝑐̂𝑘
𝑟)𝐺          𝑘 ∈ {1, … , 𝐾} (14) 

 

𝑐̂𝑘
𝑟 − 𝑐̃𝑘

𝑟 = ∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁+
𝑟∩𝑁𝑘)

          𝑘 ∈ {1, … , 𝐾} (15) 

 

c𝑘
⋆𝑟 =

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁+
𝑟∩𝑁𝑘)

𝑥̂𝑘
𝑟             𝑘 ∈ {1, … , 𝐾} (16) 

 

2.2.5. Modeling Unmet Demand  
As discussed by Pant et al.[37], the amount of import (input) of industry 𝑘 at demand 

nodes in region 𝑟, defined as ∑ −𝑏𝑖
𝑘

𝑖 ∈(𝑁−
𝑟 ∩𝑁𝑘) , contributes toward the production activity 

and the internal consumption of industry 𝑘 at region 𝑟. Thus, when a disruption causes 
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difficulties for industry 𝑘 at region 𝑟 in importing commodities, it experiences unmet 

demands totaling ∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁−
𝑟 ∩𝑁𝑘) . The consequences are the loss of output, Δ𝑥̂𝑘

𝑟 = 𝑥̂𝑘
𝑟 −

𝑥̃𝑘
𝑟, and final internal consumption, Δ(𝑐̂𝑘)int.  

 

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁−
𝑟∩𝑁𝑘)

= Δ𝑥̂𝑘
𝑟 + Δ(𝑐̂𝑘

𝑟)int            𝑘 ∈ {1, … , 𝐾} (17) 

 
Therefore, for industry 𝑘, unmet demand causes an inoperability, 𝑞𝑘, measured as the 
loss of production in industry 𝑘 as a proportion of its original production level, as shown 

in Eq. (10) with Δ𝑥̂𝑘 𝑥̂𝑘⁄ . Also, a disruption in internal consumption, causes a final 
consumption perturbation, 𝑐𝑘

⋆, and is modeled as a measure of the change in the final 

consumption as a proportion of the original production level in industry 𝑘, as shown in 

Eq. (12) with Δ𝑐̂𝑘 𝑥̂𝑘⁄ . The failure in the form of unmet demand is formulated following an 
approach adapted from the port disruption work of Pant et al.[37],[40] and the 
transportation network vulnerability formulation of Darayi et al.[41], in which a slack 

variable 𝑆𝑖
𝑘 is defined to capture unsatisfied demand at demand nodes (or undelivered 

commodities remaining with the suppliers), shown in Eq. (18). For the industries 
experiencing difficulties only in importing their required commodities, there exists a final 
consumption perturbation, as modeled in Eq. (19). 
 

Δ𝑐̂𝑘
𝑟

𝑥̂𝑘
𝑟 =

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁−
𝑟∩𝑁𝑘) − Δ𝑥̂𝑘

𝑟

𝑥̂𝑘
𝑟          𝑘 ∈ {1, … , 𝐾} (18) 

 

c𝑘
⋆𝑟 =

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁−
𝑟∩𝑁𝑘)

𝑥̂𝑘
𝑟 − 𝑞𝑘

𝑟        𝑘 ∈ {1, … , 𝐾} (19) 

 
To quantify the inoperability and final consumption perturbations for the collection of 𝐾 
interconnected industries located in 𝑅 regions, a complete solvable system of Eqs. (16) 
and (19) combined with the MRIIM in Eq. (13) is implemented. While in actual 
situations, some industries would likely consist of both supply and demand nodes in 
each region, Eqs. (16) and (19) capture failure in either only supply nodes or only 
demand nodes within a particular industry at a region. Eq. (20) formulates the total final 
consumption perturbation for industry 𝑘 in the case of having both exporting (supply) 
and importing (demand) roles.  
 

 
As a result, the perturbation vector for region 𝑟 (𝐜⋆𝑟), whose elements are captured by 
Eqs. (16), (19), or (20) depending on the importing/exporting role the nodes belonging 
to each industry in each region, parameterizes the interdependency model in Eq. (13). 
And, consequently, regional vector of inoperability 𝐪𝑟 consisting of 𝐾 elements of 
inoperability for each industry in region 𝑟 can be calculated. Following a disruptive event 
that causes difficulties for freight movement (and results in remaining commodities at 

c𝑘
⋆𝑟 =

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁+
𝑟∩𝑁𝑘)

𝑥̂𝑘
𝑟 +

∑ 𝑆𝑖
𝑘

𝑖 ∈( 𝑁−
𝑟∩𝑁𝑘)

𝑥̂𝑘
𝑟 − 𝑞𝑘

𝑟                        𝑘 ∈ {1, … , 𝐾} (20) 
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suppliers and unmet demands), 𝑞𝑘
𝑟 measures the proportional extent to which as-

planned productivity or functionality is not realized in industry 𝑘 at region 𝑟. Considering 
each industry’s production level in monetary value and calculating the total impact of the 
disruption across the regions. These multi-regional, multi-industry analyses gives us an 
opportunity to plan for network restoration considering economic impacts, as discussed 
in the next step.  
 

2.3. STEP 3: PLANNING FOR RESTORATIVE CAPACITY  
When a disruption leads to the loss of multiple network components, regional 
economies and multiple industries that relied on the functionality of the network 
experience inoperability and economic losses. We desire to tackle recovery actions in 
terms of restoration failed network components with multi-industry economic productivity 
in mind. Restorative capacity is considered to be the extent to which a freight 
transportation network is capable of being recovered through the assignment of work 
crews. Based on the static measure of restorative capacity modeled in Eq. (1), a time-
based formulation is proposed in Eq. (21) that captures the proportional economic loss 
(considering maximum loss in case of no recovery action) that could be avoided at time 
period 𝑡 by the set of recovery actions devised up to 𝑡. 𝑄max represents the summation 
of economic loss in multiple industries located in multiple regions following a disruption, 
and 𝑄𝑡 is the economic loss at time 𝑡 considering the proportionally recovered network 

in the meantime. Recall that economic loss for industry 𝑘 at region 𝑟 is calculated by 
multiplying the proportional inoperability, 𝑞𝑘

𝑟 found using Eq. (13), by the expected 

production level in monetary units, i.e. 𝑄𝑘
𝑟 = 𝑥𝑘

𝑟𝑞𝑘
𝑟. Total economic losses at each time 

period, 𝑄𝑡,is a summation of 𝑄𝑘
𝑟 over multiple industries in multiple regions for that 

particular period of time. Recovery decisions are made to maximize restorative capacity 
over multiple time periods, formulated in Eq. (21). 
 

  
A regional restorative capacity measure is proposed in Eq. (22) that represents the 
economic productivity improvement in region r triggered by restorative decisions up to 
time 𝑡. Likewise, a regional-based industry-specific measure of restorative capacity at 
time 𝑡 is formulated in Eq. (23). 
 

 

Я𝑘,𝑡
𝑟 =  

𝑄k,max
𝑟 − 𝑄𝑘,𝑡

𝑟

𝑄k,max
𝑟  (23) 

 
Without loss of generality, each node within the network can be home to either suppliers 
or consumers of multiple commodities.  The set of nodes then can be partitioned into 
three mutually exclusive sets: 𝑁 = (𝑁−, 𝑁+, 𝑁0) where 𝑁− denotes the set of nodes 
representing nodes which are home to consumers, 𝑁+ denotes which are home to 

Я𝑡 =  
𝑄max − 𝑄𝑡

𝑄max
 (21) 

Я𝑡
𝑟 =  

𝑄max
𝑟 − 𝑄𝑡

𝑟

𝑄max
𝑟

 (22) 
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suppliers, and 𝑁0 denotes all transshipment nodes. There are multiple sets of 
commodities, and it is assumed that each set represents the output of a lone industry, 
as defined by the North American Industry Classification System (NAICS). Notation 
employed in the problem formulation is summarized as follows 
 
Sets and indices 

𝑁 Set of nodes 
𝐿 Set of links 

𝑁+
  Set of supply nodes 

𝑁−
  Set of demand nodes 

𝑁0
  Set of transshipment nodes 

𝑡 = 1, … , 𝑇 Index of discrete time periods, where 𝑇 is the end of the time horizon 
𝑘 = 1, … , 𝐾 Index of industries, where 𝐾 is the total number of industries 

𝛼𝑘 Set of commodities belonging to industry 𝑘 

𝑘′ = 1, … , 𝐾′ Index of type of commodities, where 𝐾′ is the total number of commodities  
𝑟 = 1, … , 𝑅 Index of regions, where 𝑅 is the total number of regions 

𝑁𝑟 Set of nodes in the region 𝑟 

 
Parameters 

𝑢𝑖𝑗
  Capacity of link (𝑖, 𝑗)  

𝑥𝑘
𝑟 Total production of industry 𝑘 in region 𝑟 in tons 

𝑏𝑖
𝑘′

 

Mass-balance parameter representing supply/ demand/transshipment of 

commodity 𝑘′ at node 𝑖. For supply nodes 𝑏𝑖
𝑘′

> 0, for demand nodes 𝑏𝑖
𝑘′

< 0, and 

for transshipment nodes 𝑏𝑖
𝑘′

= 0 

𝑥𝑟
𝑘 Production level of industry k in region 𝑟 in monetary value 

𝑇∗(𝑘×𝑟) 
Element of the normalized multi-regional interdependency matrix 𝑇∗ of size 
(𝐾 × 𝑅) × (𝐾 × 𝑅) 

 
Variables 

𝑓𝑖𝑗𝑡
𝑘′

 Integer variable representing the flow of commodity 𝑘′ across link (𝑖, 𝑗) at time 𝑡  

𝑆𝑖𝑡
𝑘′

 
Integer slack variable that captures undelivered commodity 𝑘′ remaining with the 
supplier node i or unsatisfied demand at demand node i at time t 

𝜇𝑖𝑗𝑡 
Binary variable equal to 1 when a disrupted link (𝑖, 𝑗) recovered at time 𝑡, and 0 
otherwise 

𝛽𝑖𝑗𝑡 Binary variable equal to 1 when link (𝑖, 𝑗) is operational at time 𝑡, and 0 otherwise 

ω𝑘𝑡
𝑟  

Binary variable equal to 1 if there exists any unsatisfied demand of commodities in 
industry 𝑘 in region 𝑟 at time 𝑡, and 0 otherwise 

𝑐∗
𝑟𝑡
𝑘

 
Continuous variable representing final consumption perturbation for industry 𝑘 in 
region 𝑟 at time 𝑡 

𝑞𝑟𝑡
𝑘  Continuous variable representing inoperability level of industry 𝑘 in region 𝑟 at time 𝑡 

𝑄𝑟𝑡
𝑘  Continuous variable representing total economic loss of industry 𝑘 in region 𝑟 at time 𝑡 

 
Planning for restorative capacity by recovering the disrupted links in an order which 
leads to the minimum total economic loss over the time horizon is formulated as follows. 
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max ∑ Я𝑡

𝑇

𝑡=1

 (24) 

∑ 𝑓𝑖𝑗𝑡
𝑘′

𝐾′

𝑘′=1

≤  𝛽𝑖𝑗𝑡𝑢𝑖𝑗
 , ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 1, … , 𝑇 (25) 

∑ 𝑓𝑖𝑗𝑡
𝑘′

(𝑖,𝑗)∈ 𝐿 

− ∑ 𝑓𝑗𝑖𝑡
𝑘′

(𝑗,𝑖)∈ 𝐿 

+ 𝛾𝑖𝑆𝑖𝑡
𝑘′

=  𝑏𝑖
𝑘′

, 𝑘′ = 1, . . . , 𝐾′, 𝑡 = 1, … , 𝑇 
(26) 

𝛾𝑖 = {
−1
+1
0

       

for 𝑖 ∈ 𝑁−
 

for 𝑖 ∈ 𝑁+
 

for 𝑖 ∈ 𝑁0
 
 (27) 

∑ 𝜇𝑖𝑗𝑡 ≤ 1

𝑇

𝑡=1

, ∀ (𝑖, 𝑗) ∈ 𝐿 (28) 

𝛽𝑖𝑗𝑡 ≤ ∑ 𝜇𝑖𝑗𝑠

𝑡

𝑠=1

, ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 1, … , 𝑇 (29) 

𝑐∗
𝑟𝑡
𝑘 =

∑ ∑ 𝑆𝑖𝑡
𝑘′

𝑖 ∈( 𝑁+
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘 + ∑ ∑ 𝑆𝑖𝑡

𝑘′

𝑖 ∈( 𝑁−
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘

𝑥̂𝑘
𝑟 − 𝜔𝑘𝑡

𝑟 𝑞𝑘𝑡
𝑟 ,  

𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 

(30) 

1

𝑥̂𝑘
𝑟 ∑ ∑ 𝑆𝑖𝑡

𝑘′

𝑖 ∈( 𝑁−
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘

≤ ω𝑘𝑡
𝑟 ≤  𝑥̂𝑘

𝑟 ∑ ∑ 𝑆𝑖𝑡
𝑘′

𝑖 ∈( 𝑁−
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘

, 𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡

= 1, … , 𝑇 

(31) 

[
𝐪𝑡

1

⋮
𝐪𝑡

𝑅
] = [

𝚿⋆11 ⋯ 𝚿⋆1𝑅

⋮ ⋱ ⋮
𝚿⋆𝑅1 ⋯ 𝚿⋆𝑅𝑅

] [
𝐀⋆1 ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝐀⋆𝑅

] [
𝐪𝑡

1

⋮
𝐪𝑡

𝑅
]  + [

𝚿⋆11 ⋯ 𝚿⋆1𝑅

⋮ ⋱ ⋮
𝚿⋆𝑅1 ⋯ 𝚿⋆𝑅𝑅

] [
𝐜𝑡

⋆1

⋮
𝐜𝑡

⋆𝑅
] 

𝑡 = 1, … , 𝑇 

(32) 

𝑄𝑟𝑡
𝑘 = 𝑥𝑟

𝑘𝑞𝑟𝑡
𝑘 , 𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 (33) 

𝛽𝑖𝑗𝑡 = {0,1}, 𝜇𝑖𝑗𝑡 = {0,1}, ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 1, … , 𝑇 (34) 

𝑆𝑖𝑡
𝑘′

> 0, ∀𝑖 ∈ 𝑁+
 , ∀𝑗 ∈ 𝑁−

 , 𝑘′ = 1, . . . , 𝐾′, 𝑡 = 1, … , 𝑇 (35) 

𝑐𝑟𝑡
⋆𝑘 > 0, 𝑞𝑟𝑡

𝑘 > 0, 𝑄𝑟𝑡
𝑘 > 0, ω𝑘𝑡

𝑟 = {0,1}, 𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 (36) 

 
The proposed formulation optimizes the restoration efforts associated with a 
transportation network in the aftermath of a disruptive event. Recall that the network is 
presented by a directed graph 𝐺 = (𝑁, 𝐿), with set of nodes 𝑁 and set of links 𝐿. Due to 

a disruption, a set of nodes and associated links will be deactivated (𝛽𝑖𝑗𝑡 for disrupted 

links at time 𝑡𝑑 is equal to 0). The objective function explores a restoration schedule of 
disrupted links that leads to the maximum proportional reduction in economic losses 
across the time horizon. In fact, the order of recovery for disrupted links that has been 
defined as 𝜇𝑖𝑗𝑡 is the decision should be made by a hypothetical decision maker 

interested in maximizing the restorative capacity of a multi-regional multi-industry 
economy. Eq. (26) represents the flow balance constraint for all commodities in and out 
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of supply, demand, and transshipment nodes, in which a slack variable 𝑆𝑖𝑡
𝑘′ is defined to 

capture undelivered commodities remaining with the suppliers, or unsatisfied demand at 

demand nodes. The magnitude of 𝑆𝑖𝑡
𝑘′ is positive, and multiplier 𝛾𝑖 takes on a negative 

value for set of demand nodes 𝑁−
 , a positive value for supply nodes 𝑁+

 , and zero for 

transshipment nodes 𝑁0
 . Note that 𝑏𝑖

𝑘′
 is a positive value for supply nodes, ∀𝑖 ∈  𝑁+

 , a 

negative value for demand nodes, ∀𝑖 ∈  𝑁−
 , and it is zero for transshipment nodes, ∀𝑖 ∈

 𝑁0
 . Eqs. (28) and (29) model recovery orders. Eq. (28) shows that only one link could 

be recovered at a time, and when it is recovered, it remains operational for the 
remainder of the time horizon, as shown in Eq. (29).  Eqs. (30)-(32) calculate multi-
regional multi-industry inoperability caused by the remaining commodities at supply 
nodes and unsatisfied demand at demand nodes of different industries in different 

regions. And, 𝑄𝑟𝑡
𝑘 in Eq. (33) represents total economic loss of each industry, 𝑘, in each 

region, 𝑟 ,at time, 𝑡. In Eq. (32), 𝑞𝑡
𝑟 is the inoperability vector, 𝑘 × 1, ∀𝑘 ∈ 𝐾, of all 

industries in region 𝑟. The proposed approach benefits from the flexibility, scalability, 
and efficiency of the base MCNF paradigm with respect to optimization[25], as practiced 
in modeling interdependencies in critical infrastructure networks (e.g., [42]).      
 

3. ILLUSTRATIVE EXAMPLE: MULTI-MODAL FREIGHT 
TRANSPORT IN OKLAHOMA AND SURROUNDING 
REGION  

 
We demonstrate the proposed model on a case study based on a multi-modal freight 
transportation network, consisting of three interstate highways, railways, and inland 
waterway that connect Mississippi River Navigation System through two ports. This 
infrastructure plays a significant role in transporting commodities produced in the state 
of Oklahoma and sent to consumers in neighboring states, and so contrariwise. Four 
combined business economic areas, in surrounding states, are connected to three main 
business economic areas within Oklahoma through a multi-modal freight transportation 
network. We employ the case study to implement the proposed model and evaluate and 
analyze the restorative efforts from different perspectives, such as, regional or industry-
based economic loss caused by the disruption and network resilience behavior within 
restoration horizon. Three disruption scenarios are defined as the complete disruption of 
four different transshipment nodes. It is desired to determine the optimal schedule of 
network components recovery actions considering the multi-regional, multi-industry 
economic in the aftermath of each disruptive scenario.  
 
Figure 4 depicts a supply-demand network considering supply nodes as the three 
important business economic areas within the state of Oklahoma, consisting of 
Oklahoma City (node 1, 12, 13), the Port of Catoosa in Tulsa (node 2, 14, 15), and the 
Port of Muskogee (node 3, 16, 17), Texas (node 4, 18, 19), Louisiana (node 5, 20, 21), 
Arkansas (node 6, 22, 23), and Illinois (node 7, 24, 25)[43]. Each of the nodes could be 
home to either suppliers or consumers of multiple commodities, or just be an 
intermediate node. We do note that there are multiple sets of commodities, and it is 
assumed that each set belongs to a lone industry. 
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Table 1 briefly discusses the multi-modal freight transportation network that facilitates 
the flow of different commodities between the state of Oklahoma and the neighboring 
states. The network consists of a part of interstate highways I-35, which connects 
Oklahoma to the north-south corridor, and I-40 and I-44, which is connected through the 
east-west corridor. Part of US highways 169 and 165 within Oklahoma connects the 
Port of Catoosa and the Port of Muskogee to the interstate highway network. In addition 
to the truck way facilities, an intermodal rail-truck facility in Oklahoma City near the 
junction of I-35 and I-40, and the one in Tulsa, OK, which run by Burlington Northern 
Santa Fe (BNSF) railroad are considered in developing the network, as well as part of 
the inland waterway network navigated by McClellan–Kerr Arkansas River Navigation 
System which connects the Port of Catoosa and the Port of Muskogee to the Port of 
New Orleans, LA (node 5), the Port of Chicago, IL (node 7), the Port of Little Rock, AR 
(node 6), and the Port of Texas City, TX (node 4). 
 

  
(a) (b) 

Figure 4. Representations of (a) spatial location of multi-modal nodes in Oklahoma and 
surrounding states, and (b) the connected transportation network. 

 
As defined by NAICS, 62 industries operate in each of the five states, therefore 𝐀⋆ 

matrix regionalized for each state is 62 × 62. Due to high trade figures reported by 
Bureau of Transportation Statistics[32], we consider six primary industries listed in Table 
1, export/import commodities from/to Oklahoma, with respect to the four considered 
surrounding states. Discussed previously, it is assumed that each set of commodities 
belongs to an industry as defined by NAICS economic sectors, and each node within 
the network is considered to be home to either suppliers or consumers of multiple 
commodities. 
 
Based on the combined estimated annual supply and demand in tons for the associated 
industries and states compiled from different databases[44]-[47], a list of monthly supply 
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and demand is presented in Table 3 (assuming constant monthly demand, or annual 
demand divided by 12). 
 

Table 1. Spatial location of multi-modal nodes in Oklahoma and surrounding states. 

Component Description 

Node 2 Port of Catoosa 

Node 3 Port of Muskogee 

Node 4 Port of Texas City 

Node 5 Port of New Orleans 

Node 6 Port of Little Rock 

Node 7 Port of Chicago 

Node 8 Intermodal terminal, Tulsa, OK 

Node 9 Transshipment node that connects the Oklahoma City, OK, business economic 
area to the north and south through I-35 and to the east through I-44 

Node 10 Transshipment node in Fort Smith, AR, that is a connecting point on I-40 to link 
Oklahoma City and Tulsa, OK to Little Rock, AR 

Node 11 Transshipment node that connects the Tulsa Port of Catoosa industrial park to 
I-44. 

Link (1,7)  Part of the North America railroad which connects Oklahoma City, OK, with 
Chicago, IL. 

Link (2,8) A local railroad connecting Port of Catoosa to the North America railroad  

Link (1,4) Part of the North America railroad which connects Oklahoma City, OK, with 
Texas City, TX. 

Links (2,5), 
(2,4), (2,6), 
and (2,7) 

Part of the inland waterway network navigated by McClellan–Kerr Arkansas 
River Navigation System and connect Port of Catoosa with the Port of New 
Orleans, the Port of Texas City, the Port of Little Rock, and the Port of Chicago, 
respectively.   

Links (3,6), 
(3,4), and 
(3,5) 

Part of the inland waterway network navigated by McClellan–Kerr Arkansas 
River Navigation System and connect the port of Muskogee to the Port of Little 
Rock, the Port of Texas City, and the Port of New Orleans, respectively. 

Link (9,4) The truck way connects Oklahoma City to Texas City, TX, using interstate 
highways I-35 and I-45.  

Link (9,11) Part of interstate highway I-44 which connects Oklahoma City to Tulsa. 

 

Table 2. Names and NAICS codes for the primary industries using the network. 

Industry name NAICS code 

Food and beverage and tobacco products  311 
Petroleum and coal products  324 
Chemical products  325 
Nonmetallic mineral products  327 
Machinery  333 
Miscellaneous manufacturing  339 
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Table 3. Combined monthly demands/supplies of each industry (column) at supply/demand nodes 
(rows) connecting through the network (in tons). 

 311 324 325 327 333 339 

Supply nodes       

Oklahoma City  362526 0 300501 183188 23790 118242 

Port of Catoosa  50244 454911 284685 25268 2470 424 

Port of Muskogee 0 33962 0 31886 0 30021 

Texas  23250 0 21750 0 0 577 

Louisiana  993 3828 36528 0 7174 0 

Arkansas  0 0 60000 635 17000 1100 

Illinois  356 0 448 0 70000 0 

Demand nodes       

Oklahoma City  23250 0 60000 0 17000 1100 

Port of Catoosa  1064 3828 36976 635 7174 577 

Port of Muskogee  285 0 21750 0 70000 0 

Texas  97281 316905 204006 0 25838 30154 

Louisiana  50244 18449 0 0 267 0 

Arkansas  265245 153518 381180 41038 156 54494 

Illinois  0 0 0 199304 0 64039 

 

3.1. STEP 1 APPLIED: FREIGHT MOVEMENT AND DISRUPTION 
To parametrize the MCNF model, the cost vector is computed based on the 
transportation mode and the mileage of the distances between nodes: the per ton-mile 
for a barge is estimated at $0.97, compared to $2.53 for rail, and $5.35 for trucking[48]. 
The monthly capacity of each link is estimated from historical data as a shared 
constraint for all commodities flowing on the link[49], representing the availability of 
transportation facilities. Assuming that the total supply of commodity 𝑘′ is equal to the 
total demand of the same commodity throughout the network, as shown in Table 3, a 
baseline flow resulted in no remaining commodities at supply nodes and no unsatisfied 
demand at demand nodes when there is no disruption to the functionality of the 
network. 
 
In the illustrative example, disruption scenarios are defined as the removal of multiple 
network components, (i.e., nodes and associated links) at time 𝑡𝑑 (when disruption 
happens). Assuming that annual industry production accumulates consistently across 
the year (i.e., neither production nor interdependency relationships vary day-to-day, 
week-to-week, month-to-month), a smaller month-long time horizon is considered here 
as an appropriate proportion of a year to calculate the particular disruptive event 
cascading effect (e.g., a two-week closure of port facilities [Pant et al. 2011]). Recovery 
actions will be taken throughout the time horizon and it is possible to recover one and 
only one link at a time. Three disruption scenarios are defined as the removal of multiple 
intermediate nodes and associated links within the network. In the first scenario, it is 
assumed that the disruptive event would deactivate nodes 10, 9, 11 and all their 
associated links, together with three links that connect node 7 to nodes 1, 2, and 8. The 
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second disruption scenario considers the loss of all associated links of nodes 8, 9, 11 
and two links that connect node 4 to node 1 and 3. The third scenario disables nodes 
10, 8, 11 and all the associated links. The disruptive event causes a failure within the 
supply-demand network. Failure in the form remaining commodities with suppliers 

or/and unsatisfied demands at demand nodes, as represented by 𝑆𝑖𝑡
𝑘′

, affects industry 

output and result in propagated inoperability through many of the interconnected 
industries located in multiple regions.  
 
In the illustrative example, three supply/demand nodes are within the state of Oklahoma 
and four supply/demand nodes are located in Texas, Louisiana, Arkansas, and Illinois. 
Tables 4 and 5 report the sum of the slack (remaining supply) by sets of commodities 

belonging to a particular industry at supply nodes, ∑ ∑ 𝑆𝑖𝑡
𝑘′

𝑖 ∈( 𝑁+
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘 ,  in a particular 

region (state) following a desruption scenario, and ∑ ∑ 𝑆𝑖𝑡
𝑘′

𝑖 ∈( 𝑁−
 ∩𝑁𝑟 )𝑘′∈𝛼𝑘 , the sum of the 

slack (unsatisfied demand) by sets of commodities belonging to a particular industry at 
demand nodes in a partiular region (state), respectively, omitting the flow on the 
disrupted components from the baseline flow within the network. As shown in Tables 4 
and 5, most industry sectors in these five states are vulnerable in all disruption 
scenarios whether the failure occures in the form of reminingn commodities at suppliers 
or unmet demand at demand nodes.  
 

3.2. STEP 2 APPLIED: MULTI-INDUSTRY IMPACT 
When a disruption happens, supply-demand network failure in the form of remining 
commodities at suppliers and unmet demands at demand nodes causes economic 
inoperability in multiple industry sectors located in multiple regions.  The propagation of 
economic inoperability in a network of interconnected multi-regional industry sectors is 

captured by 𝑞𝑟
𝑘 in vector 𝑞𝑅  for each region in Eq. (10), representing the extent to which 

an industry output will not be produced or an industry input will not be received. And, the 
effect of the disruption on the economy of each region (state) is captured by 𝑄𝑟.  
 
Following a disruption, the remaining commodities at suppliers and unmet demands at 
demand nodes shown in Tables 4 and 5, respectively, cause economic inoperability 
perturbated throughout the multi-regional, multi-industry network, calculated with Eq. 
(32). This inoperability is translated into a monetary value to represent the economic 
loss of industry k in region r, in Eq. (33). In Tables 6 through 9, it is shown how different 
disruption scenarios affect industry sectors in multiple states, assuming that no recovery 
action taken, and just following a disruption it is tried to facilitate the commodity flows 
throughout the disrupted network using its maximum capacity. The Machinery industry 
(333) is the most vulnerable sector in the case of each three disruptive scenarios. Each 
of these disruption scenarios also affects the operability of the Miscellaneous 
manufacturing industry (339), yet in lesser extent than industry (333). It is also clear that 
almost all the six industry sectors in all of these five states would be affected in either of 
these three disruption scenarios (e.g. economic loss caused by the first disruption 
scenario is graphically depicted in Figure 5). 
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Table 4. Tons of remaining commodities (by industry) at suppliers with the removal of network 
components. 

Scenario Region 311 324 325 327 333 339 

1 Oklahoma 412770 488873 585187 240342 26262 148687 

1 Texas 23250 0 21750 0 0 577 

1 Louisiana 993 3828 36528 0 7174 0 

1 Arkansas 0 0 60000 635 17000 1100 

1 Illinois 0 0 0 0 0 0 

2 Oklahoma 362526 448612 382487 240342 26262 138687 

2 Texas 23250 0 21750 0 0 577 

2 Louisiana 993 3828 36528 0 7174 0 

2 Arkansas 0 0 60000 635 17000 1100 

2 Illinois 356 0 448 0 70000 0 

3 Oklahoma 412770 454911 585187 208456 26262 118666 

3 Texas 23250 0 21750 0 0 577 

3 Louisiana 0 0 0 0 0 0 

3 Arkansas 0 0 0 0 0 0 

3 Illinois 0 0 0 0 0 0 

 

Table 5. Tons of unsatisfied commodities (by industry) at demand nodes with the removal of 
network components. 

Scenario Region 311 324 325 327 333 339 

1 Oklahoma 24599 3828 118726 635 94174 1677 

1 Texas 97281 316906 204006 0 25838 30154 

1 Louisiana 50244 18450 0 0 267 0 

1 Arkansas 265245 153518 381180 41038 156 54494 

1 Illinois 0 0 0 199304 0 0 

2 Oklahoma 24599 3828 118726 635 94174 1677 

2 Texas 97281 316906 204006 0 25838 30154 

2 Louisiana 50244 18450 0 0 267 0 

2 Arkansas 265245 153518 381180 41038 156 54494 

2 Illinois 0 0 0 199304 0 64039 

3 Oklahoma 24599 3828 118726 635 24174 1677 

3 Texas 97281 316906 204006 0 25838 30154 

3 Louisiana 50244 18450 0 0 267 0 

3 Arkansas 265245 119556 381180 9152 0 24473 

3 Illinois 0 0 0 199304 0 0 

 
Tables 6 through 9 represent a detailed report of the maximum economic loss in the 
aftermath of each disruption scenarios. Each column is associated with one disruption 
scenario and includes: (i) the total economic loss resulted from each disruption 
scenario, (ii) the total economic loss in each state, and (iii) a detailed report of the total 
economic loss in each of the six industry sectors under study. 
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Figure 5. Maximum economic loss associated with each industry in each region. 

 

Table 6. Maximum total economic loss across all industries and regions for each disruption 
scenario. 

Scenario 1 Scenario 2 Scenario 3 

14707.40 12711.9 13340.7 

 
 

Table 7. Maximum economic loss for each region for each disruption scenario. 

Region Scenario 1 Scenario 2 Scenario 3 

Oklahoma 558.49 494.58 631.12 

Texas 1218.60 1199.37 530.33 

Louisiana 262.51 236.42 244.68 

Arkansas 6917.85 5832.27 129.17 

Illinois 5749.97 4949.30 6065.67 

 
 

Table 8. Maximum economic loss for each industry for each disruption scenario. 

Industry Scenario 1 Scenario 2 Scenario 3 

311 716.28 633.01 1737.92 

324 606.02 519.83 419.01 

325 276.26 242.88 1105.74 

327 148.63 132.16 178.27 

333 6659.87 5761.98 6532.99 

339 1866.38 1586.53 5104.71 
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Table 9. Maximum economic loss for each industry by each region for each disruption scenario. 

Region Industry Scenario 1 Scenario 2 Scenario 3 

Oklahoma 311 78.57 71.08 46.33 

Oklahoma 324 27.39 27.30 0.55 

Oklahoma 325 4.43 3.95 3.06 

Oklahoma 327 14.25 13.04 7.35 

Oklahoma 333 5.23 6.98 0.00 

Oklahoma 339 105.65 90.02 94.58 

Texas 311 81.14 86.91 74.25 

Texas 324 0.07 0.15 0.06 

Texas 325 18.59 19.45 16.99 

Texas 327 4.79 8.00 4.38 

Texas 333 732.12 712.86 663.06 

Texas 339 61.06 59.30 55.57 

Louisiana 311 13.46 13.03 3.44 

Louisiana 324 25.47 24.13 6.70 

Louisiana 325 72.26 63.32 61.53 

Louisiana 327 3.86 3.81 0.64 

Louisiana 333 0.00 0.00 0.00 

Louisiana 339 42.55 36.63 36.35 

Arkansas 311 349.04 293.91 329.30 

Arkansas 324 516.65 434.64 489.19 

Arkansas 325 20.14 17.03 18.97 

Arkansas 327 91.17 76.81 85.95 

Arkansas 333 3113.43 2626.63 2939.40 

Arkansas 339 1085.99 913.65 1029.39 

Illinois 311 194.04 168.08 177.76 

Illinois 324 36.38 32.75 33.96 

Illinois 325 161.05 139.44 143.76 

Illinois 327 34.63 30.54 30.90 

Illinois 333 2809.18 2415.48 2463.21 

Illinois 339 580.93 495.07 529.63 

 

3.3. STEP 3 APPLIED: PLANNING FOR RESTORATIVE CAPACITY  
We applied the proposed freight transportation network recovery methodology to 
enhance restorative capacity of the network following a disruption in three different 
disruption scenarios and run our computational experiment on an Intel Core™ i7-7500U 
CPU 2.90GHz (with 32 GB RAM) using Gurobi 7.0.2 on Python 2.7.13. As it is 
discussed in Section 2.3, the proposed model is supposed to enhance restorative 
capacity in a network of interconnected industries located in multiple regions by devising 
an order of recovery by which total economic loss can be avoided will be maximized 

(max ∑ Я𝑡
𝑇
𝑡=1 ).  As graphically depicted in Figure 6,  the goal is to enhance system 

resilience via devising an order of recovery actions that improves restorative capacity of 
the network. The proportional value of the maximum loss that can be avoided by 
recovery decisions has been considered as the system performance, a measure to 
monitor the trajectory of the economic productivity in the whole system. When a 
disruption happens (𝑡𝑑=1), network failure causes the economic loss in a network of 
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interconnected industries from multiple regions and degrades economic productivity. In 
scenarios 1 and 2, system performance is fully recovered when al 12 disrupted links are 
repaired while in scenario 3, network functionality is recovered at time 7, after repairing 
7 components. This shows the importance of links 4-1, 4-3, 7-1, 7-2, and 7-8 that are 
functional in scenario 3 but some are disrupted in either of scenarios 1 and 2. It is worth 
mentioning that the order of recovery actions is devised to enhance the restorative 
capacity in the whole system which consists of five interconnected states. 
 

 

Figure 6. Total system economic resilience trajectory via recovery actions. 

 
In Figures 7-9, the trajectory of economic productivity via the order of recovery devised 
in each disruption scenario (considering the total economic resilience in the entire 
network) is monitored for all six industries and all five regions (states). Figures 10-12 
illustrated the regional-based, industry-specific inoperability trajectories via recovery 
actions that monitor the proportional extent to which inoperability is improved for 
different industries located in different regions. Though a consistent industry-
based/regional system recovery is depicted in Figures 7-9 for all six industry sectors 
and all five states, Figures 10-12 show that the multi-regional, multi-industry perspective 
in devising recovery actions might not be of benefit to all regions/industries. In fact, the 
effect of a recovery action at time 𝑡 in maximizing the total economic loss that can be 
avoided is more important than region/industry specific impacts of the recovery action. 
In scenarios 1 and 2, the two lowest system recovery ratios happen in Louisiana and 
Arkansas. This caused by the structure of the network and the dependency of these two 
states on particular network components (i.e. associated links to node 4 and 7) that 
necessitates the recovery of almost all disrupted components for full economic 
productivity of these two regions. Also, Texas, Illinois, and Oklahoma have the highest 
recovery ratio enforced by their share in the total economy and, of course, higher 
connectivity in the network. As shown in Figures 7a and 8a, high-dollar industries like 
Petroleum and coal products (324) do not necessarily have the highest recovery ratios, 
and the share of each industry sector to the entire economy and the topological 
connectivity of suppliers and consumers of commodities belonging to that industry 
prioritize recovery actions. 
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(a) (b) 

Figure 7. Economic resilience trajectory (a) for each industry and (b) in each region for Scenario 1.  

 

  
(a) (b) 

Figure 8. Economic resilience trajectory (a) for each industry and (b) in each region for Scenario 2. 

 

  
(a) (b) 

Figure 9. Economic resilience trajectory (a) for each industry and (b) in each region for Scenario 3. 
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As shown in Figures 10-12, regional-based, industry-specific inoperability trajectories 
via recovery actions varies for different industry sectors in different regions. Monitoring 
the trajectory of economic inoperability, as the proportional extent to which industries 
are unproductive after a change in final consumption or a forced change in final 
consumption due to a lack of supply, shows how the recovery actions affect each of the 
six industry sectors in all five states. As shown in Figure 12d, the higher the share of an 
industry sector in the economy of a region is (e.g., Machinery (333) in Oklahoma), the 
more vulnerable it is to disruption scenarios which deactivate highly connected 
components associated to the suppliers/consumers in that region (e.g., nodes 8, 9, 11). 
Though the magnitude of economic inoperability imposed on different industries in the 
same region by a disruption might vary (Figures 10-12)Figure 10 in highly connected 
regions with more share in the whole economy (Texas, Oklahoma, Illinois), the recovery 
trajectory has almost the same slope for most industries in that particular region. Also, 
in Figure 11, a consistent recovery slope is shown for multiple industries located in the 
same region that is different from variable recovery rations shown in Figures 10a,c and 
11a,c, and points out the importance of the network connectivity in addition to the share 
of the region in the entire economy.  
  

   
(a) (b) (c) 

  
(d) (e) 

Figure 10. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, (b) Illinois, 
(c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 1. 
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(a) (b) (c) 

 
 

(d) (e) 

Figure 11. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, (b) Illinois, 
(c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 2. 

 

  
 

(a) (b) (c) 

 
 

(d) (e) 

Figure 12. Regional-based, industry-specific system recovery trajectory: (a) Arkansas, (b) Illinois, 
(c) Louisiana, (d) Oklahoma, and (e) Texas for Scenario 3. 
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4. CONCLUSIONS 
 
The focus of this work is to enhance network resilience via restorative capacity. In the 
first step, an integrated framework is developed to measure the economic impacts of a 
disruption within a multi-modal freight transportation network using a typical multi-
commodity network flow formulation and a multi-regional economic interdependency 
model.  And, a measure of restorative capacity, as the extent to which a freight 
transportation network is capable of being recovered through the assignment of work 
crews, is proposed to analyze a broader perspective on freight transportation network 
considering its role in the economic productivity. In fact, the goal is to maximize the 
economic loss that can be avoided by recovery decisions. 
 
The primary contribution of this approach is the integration of the multi-commodity 
network flow representation of the multi-modal transportation network with a multi-
regional, multi-industry economic inoperability model to propose a framework to 
enhance infrastructure network resilience through recovery decisions. A stylized case 
study of a multi-modal transportation network that connects state of Oklahoma to 
surrounding states is considered to illustrate the developed recovery analysis paradigm.  
 
Regional and industry-specific economic impacts of recovery decisions are analyzed. It 
is shown that recovery actions are devised to maximize total economic loss that can be 
avoided rather than considering region/industry specific impacts of the recoveries. In 
general, multi-regional, multi industry perspective changes the resilience decisions 
considering total economic productivity though it might not be of benefit to all the 
regions/industries. 
 
In the proposed network recovery model, it is assumed that recovery time is equal for all 
disrupted components, and it is just possible to recover one link at a time. The model 
can be further improved by considering proportional recovery and scheduling crews to 
recover multiple disrupted components at a time.  
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